Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 121
Filter
1.
Immunity ; 55(6): 1032-1050.e14, 2022 06 14.
Article in English | MEDLINE | ID: mdl-35704993

ABSTRACT

Conventional dendritic cells (cDCs), cDC1 and cDC2, act both to initiate immunity and maintain self-tolerance. The tryptophan metabolic enzyme indoleamine 2,3-dioxygenase 1 (IDO1) is used by cDCs in maintaining tolerance, but its role in different subsets remains unclear. At homeostasis, only mature CCR7+ cDC1 expressed IDO1 that was dependent on IRF8. Lipopolysaccharide treatment induced maturation and IDO1-dependent tolerogenic activity in isolated immature cDC1, but not isolated cDC2. However, both human and mouse cDC2 could induce IDO1 and acquire tolerogenic function when co-cultured with mature cDC1 through the action of cDC1-derived l-kynurenine. Accordingly, cDC1-specific inactivation of IDO1 in vivo exacerbated disease in experimental autoimmune encephalomyelitis. This study identifies a previously unrecognized metabolic communication in which IDO1-expressing cDC1 cells extend their immunoregulatory capacity to the cDC2 subset through their production of tryptophan metabolite l-kynurenine. This metabolic axis represents a potential therapeutic target in treating autoimmune demyelinating diseases.


Subject(s)
Indoleamine-Pyrrole 2,3,-Dioxygenase , Kynurenine , Animals , Dendritic Cells , Humans , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Kynurenine/metabolism , Mice , Signal Transduction , Tryptophan/metabolism
2.
Immunity ; 46(2): 233-244, 2017 02 21.
Article in English | MEDLINE | ID: mdl-28214225

ABSTRACT

Arginase 1 (Arg1) and indoleamine 2,3-dioxygenase 1 (IDO1) are immunoregulatory enzymes catalyzing the degradation of l-arginine and l-tryptophan, respectively, resulting in local amino acid deprivation. In addition, unlike Arg1, IDO1 is also endowed with non-enzymatic signaling activity in dendritic cells (DCs). Despite considerable knowledge of their individual biology, no integrated functions of Arg1 and IDO1 have been reported yet. We found that IDO1 phosphorylation and consequent activation of IDO1 signaling in DCs was strictly dependent on prior expression of Arg1 and Arg1-dependent production of polyamines. Polyamines, either produced by DCs or released by bystander Arg1+ myeloid-derived suppressor cells, conditioned DCs toward an IDO1-dependent, immunosuppressive phenotype via activation of the Src kinase, which has IDO1-phosphorylating activity. Thus our data indicate that Arg1 and IDO1 are linked by an entwined pathway in immunometabolism and that their joint modulation could represent an important target for effective immunotherapy in several disease settings.


Subject(s)
Arginase/immunology , Dendritic Cells/immunology , Immune Tolerance/physiology , Indoleamine-Pyrrole 2,3,-Dioxygenase/immunology , Signal Transduction/immunology , Animals , Arginase/metabolism , Arginine/immunology , Arginine/metabolism , Blotting, Western , Dendritic Cells/metabolism , Female , Gene Expression Profiling , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Mice , Mice, Inbred C57BL , Real-Time Polymerase Chain Reaction , Transcriptome , Tryptophan/immunology , Tryptophan/metabolism
3.
Hum Mol Genet ; 30(3-4): 265-276, 2021 04 26.
Article in English | MEDLINE | ID: mdl-33693650

ABSTRACT

Mutations in the WFS1 gene, encoding wolframin (WFS1), cause endoplasmic reticulum (ER) stress and are associated with a rare autosomal-recessive disorder known as Wolfram syndrome (WS). WS is clinically characterized by childhood-onset diabetes mellitus, optic atrophy, deafness, diabetes insipidus and neurological signs. We identified two novel WFS1 mutations in a patient with WS, namely, c.316-1G > A (in intron 3) and c.757A > T (in exon 7). Both mutations, located in the N-terminal region of the protein, were predicted to generate a truncated and inactive form of WFS1. We found that although the WFS1 protein was not expressed in peripheral blood mononuclear cells (PBMCs) of the proband, no constitutive ER stress activation could be detected in those cells. In contrast, WS proband's PBMCs produced very high levels of proinflammatory cytokines (i.e. TNF-α, IL-1ß, and IL-6) in the absence of any stimulus. WFS1 silencing in PBMCs from control subjects by means of small RNA interference also induced a pronounced proinflammatory cytokine profile. The same cytokines were also significantly higher in sera from the WS patient as compared to matched healthy controls. Moreover, the chronic inflammatory state was associated with a dominance of proinflammatory T helper 17 (Th17)-type cells over regulatory T (Treg) lymphocytes in the WS PBMCs. The identification of a state of systemic chronic inflammation associated with WFS1 deficiency may pave the way to innovative and personalized therapeutic interventions in WS.


Subject(s)
Inflammation , Leukocytes, Mononuclear/metabolism , Membrane Proteins/genetics , Mutation , Wolfram Syndrome/metabolism , Child , Cytokines/genetics , Cytokines/metabolism , Female , Gene Expression Regulation , Humans , Leukocytes, Mononuclear/immunology , Sequence Analysis, DNA , Wolfram Syndrome/genetics , Wolfram Syndrome/immunology , Wolfram Syndrome/physiopathology
4.
Nat Immunol ; 12(9): 870-8, 2011 Jul 31.
Article in English | MEDLINE | ID: mdl-21804557

ABSTRACT

Regulation of tryptophan metabolism by indoleamine 2,3-dioxygenase (IDO) in dendritic cells (DCs) is a highly versatile modulator of immunity. In inflammation, interferon-γ is the main inducer of IDO for the prevention of hyperinflammatory responses, yet IDO is also responsible for self-tolerance effects in the longer term. Here we show that treatment of mouse plasmacytoid DCs (pDCs) with transforming growth factor-ß (TGF-ß) conferred regulatory effects on IDO that were mechanistically separable from its enzymic activity. We found that IDO was involved in intracellular signaling events responsible for the self-amplification and maintenance of a stably regulatory phenotype in pDCs. Thus, IDO has a tonic, nonenzymic function that contributes to TGF-ß-driven tolerance in noninflammatory contexts.


Subject(s)
Adaptive Immunity , Dendritic Cells , Immune Tolerance , Indoleamine-Pyrrole 2,3,-Dioxygenase , Signal Transduction/immunology , Transforming Growth Factor beta/immunology , Adaptive Immunity/drug effects , Animals , Dendritic Cells/cytology , Dendritic Cells/drug effects , Dendritic Cells/enzymology , Dendritic Cells/immunology , Humans , Hypersensitivity/immunology , Immune Tolerance/drug effects , Indoleamine-Pyrrole 2,3,-Dioxygenase/immunology , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Interferon-gamma/immunology , Interferon-gamma/metabolism , Mice , Mice, Inbred BALB C , Mice, Knockout , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Transforming Growth Factor beta/pharmacology , Tryptophan/metabolism
5.
Pharmacol Res ; 198: 106994, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37972721

ABSTRACT

The functional interdependencies between the molecular components of a biological process demand for a network medicine platform that integrates systems biology and network science, to explore the interactions among biological components in health and disease. Access to large-scale omics datasets (genomics, transcriptomics, proteomics, metabolomics, metagenomics, phenomics, etc.) has significantly advanced our opportunity along this direction. Studies utilizing these techniques have begun to provide us with a deeper understanding of how the interaction between the intestinal microbes and their host affects the cardiovascular system in health and disease. Within the framework of a multiomics network approach, we highlight here how tryptophan metabolism may orchestrate the host-microbes interaction in cardiovascular diseases and the implications for precision medicine and therapeutics, including nutritional interventions.


Subject(s)
Cardiovascular Diseases , Tryptophan , Humans , Genomics/methods , Proteomics/methods , Gene Expression Profiling/methods , Metabolomics/methods
6.
Proc Natl Acad Sci U S A ; 117(7): 3848-3857, 2020 02 18.
Article in English | MEDLINE | ID: mdl-32024760

ABSTRACT

l-tryptophan (Trp), an essential amino acid for mammals, is the precursor of a wide array of immunomodulatory metabolites produced by the kynurenine and serotonin pathways. The kynurenine pathway is a paramount source of several immunoregulatory metabolites, including l-kynurenine (Kyn), the main product of indoleamine 2,3-dioxygenase 1 (IDO1) that catalyzes the rate-limiting step of the pathway. In the serotonin pathway, the metabolite N-acetylserotonin (NAS) has been shown to possess antioxidant, antiinflammatory, and neuroprotective properties in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). However, little is known about the exact mode of action of the serotonin metabolite and the possible interplay between the 2 Trp metabolic pathways. Prompted by the discovery that NAS neuroprotective effects in EAE are abrogated in mice lacking IDO1 expression, we investigated the NAS mode of action in neuroinflammation. We found that NAS directly binds IDO1 and acts as a positive allosteric modulator (PAM) of the IDO1 enzyme in vitro and in vivo. As a result, increased Kyn will activate the ligand-activated transcription factor aryl hydrocarbon receptor and, consequently, antiinflammatory and immunoregulatory effects. Because NAS also increased IDO1 activity in peripheral blood mononuclear cells of a significant proportion of MS patients, our data may set the basis for the development of IDO1 PAMs as first-in-class drugs in autoimmune/neuroinflammatory diseases.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/enzymology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Indoleamine-Pyrrole 2,3,-Dioxygenase/chemistry , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Allosteric Regulation , Allosteric Site , Animals , Biocatalysis , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/genetics , Female , Humans , Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics , Kynurenine/metabolism , Leukocytes, Mononuclear/metabolism , Male , Mice, Knockout , Multiple Sclerosis/enzymology , Multiple Sclerosis/genetics , Multiple Sclerosis/metabolism , Serotonin/analogs & derivatives , Serotonin/chemistry , Serotonin/metabolism , Tryptophan/metabolism
7.
Int J Mol Sci ; 24(19)2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37834316

ABSTRACT

The pathogenesis of coronavirus disease 2019 (COVID-19) is associated with a hyperinflammatory response. The mechanisms of SARS-CoV-2-induced inflammation are scantly known. Methylglyoxal (MG) is a glycolysis-derived byproduct endowed with a potent glycating action, leading to the formation of advanced glycation end products (AGEs), the main one being MG-H1. MG-H1 exerts strong pro-inflammatory effects, frequently mediated by the receptor for AGEs (RAGE). Here, we investigated the involvement of the MG-H1/RAGE axis as a potential novel mechanism in SARS-CoV-2-induced inflammation by resorting to human bronchial BEAS-2B and alveolar A549 epithelial cells, expressing different levels of the ACE2 receptor (R), exposed to SARS-CoV-2 spike protein 1 (S1). Interestingly, we found in BEAS-2B cells that do not express ACE2-R that S1 exerted a pro-inflammatory action through a novel MG-H1/RAGE-based pathway. MG-H1 levels, RAGE and IL-1ß expression levels in nasopharyngeal swabs from SARS-CoV-2-positive and -negative individuals, as well as glyoxalase 1 expression, the major scavenging enzyme of MG, seem to support the results obtained in vitro. Altogether, our findings reveal a novel mechanism involved in the inflammation triggered by S1, paving the way for the study of the MG-H1/RAGE inflammatory axis in SARS-CoV-2 infection as a potential therapeutic target to mitigate COVID-19-associated pathogenic inflammation.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Receptor for Advanced Glycation End Products/metabolism , Spike Glycoprotein, Coronavirus , Pyruvaldehyde/pharmacology , Pyruvaldehyde/metabolism , Glycation End Products, Advanced/metabolism , Angiotensin-Converting Enzyme 2 , Inflammation/metabolism
8.
Immunity ; 39(2): 372-85, 2013 Aug 22.
Article in English | MEDLINE | ID: mdl-23973224

ABSTRACT

Endogenous tryptophan (Trp) metabolites have an important role in mammalian gut immune homeostasis, yet the potential contribution of Trp metabolites from resident microbiota has never been addressed experimentally. Here, we describe a metabolic pathway whereby Trp metabolites from the microbiota balance mucosal reactivity in mice. Switching from sugar to Trp as an energy source (e.g., under conditions of unrestricted Trp availability), highly adaptive lactobacilli are expanded and produce an aryl hydrocarbon receptor (AhR) ligand-indole-3-aldehyde-that contributes to AhR-dependent Il22 transcription. The resulting IL-22-dependent balanced mucosal response allows for survival of mixed microbial communities yet provides colonization resistance to the fungus Candida albicans and mucosal protection from inflammation. Thus, the microbiota-AhR axis might represent an important strategy pursued by coevolutive commensalism for fine tuning host mucosal reactivity contingent on Trp catabolism.


Subject(s)
Candida albicans/immunology , Interleukins/metabolism , Limosilactobacillus reuteri/metabolism , Receptors, Aryl Hydrocarbon/metabolism , Tryptophan/metabolism , Animals , Basic Helix-Loop-Helix Transcription Factors/deficiency , Basic Helix-Loop-Helix Transcription Factors/genetics , Candidiasis/immunology , Energy Metabolism , Female , Gastrointestinal Tract/immunology , Gastrointestinal Tract/metabolism , Gastrointestinal Tract/microbiology , Indoleamine-Pyrrole 2,3,-Dioxygenase/deficiency , Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics , Indoles/metabolism , Interleukin-17/deficiency , Interleukin-17/genetics , Limosilactobacillus reuteri/growth & development , Limosilactobacillus reuteri/immunology , Metagenome , Mice , Mice, Inbred BALB C , Mice, Inbred C3H , Mice, Inbred C57BL , Mice, Knockout , Mice, SCID , Myeloid Differentiation Factor 88/deficiency , Myeloid Differentiation Factor 88/genetics , Probiotics , Receptors, Aryl Hydrocarbon/deficiency , Receptors, Aryl Hydrocarbon/genetics , Toll-Like Receptor 2/deficiency , Toll-Like Receptor 2/genetics , Tryptophan/chemistry , Interleukin-22
9.
EMBO Rep ; 21(2): e48073, 2020 02 05.
Article in English | MEDLINE | ID: mdl-31867855

ABSTRACT

Apoptotic signalling by p53 occurs at both transcriptional and non-transcriptional levels, as p53 may act as a direct apoptogenic stimulus via activation of the intrinsic mitochondrial pathway. HOPS is a highly conserved, ubiquitously expressed shuttling protein with an ubiquitin-like domain. We generated Hops-/- mice and observed that they are viable with no apparent phenotypic defects. However, when treated with chemotherapeutic agents, Hops-/- mice display a significant reduction in apoptosis, suggesting an impaired ability to respond to genotoxic stressors. We show that HOPS acts as a regulator of cytoplasmic p53 levels and function. By binding p53, HOPS inhibits p53 proteasomal degradation and favours p53 recruitment to mitochondria and apoptosis induction. By interfering with importin α, HOPS further increases p53 cytoplasmic levels. Thus, HOPS promotes the p53-dependent mitochondrial apoptosis pathway by preserving cytoplasmic p53 from both degradation and nuclear uptake.


Subject(s)
Apoptosis , Intracellular Signaling Peptides and Proteins , Membrane Proteins , Mitochondria , Tumor Suppressor Protein p53 , Animals , Apoptosis/genetics , Cytoplasm/genetics , Cytoplasm/metabolism , Mice , Mice, Knockout , Mitochondria/genetics , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
10.
EMBO Rep ; 21(12): e49756, 2020 12 03.
Article in English | MEDLINE | ID: mdl-33159421

ABSTRACT

Knowledge of a protein's spatial dynamics at the subcellular level is key to understanding its function(s), interactions, and associated intracellular events. Indoleamine 2,3-dioxygenase 1 (IDO1) is a cytosolic enzyme that controls immune responses via tryptophan metabolism, mainly through its enzymic activity. When phosphorylated, however, IDO1 acts as a signaling molecule in plasmacytoid dendritic cells (pDCs), thus activating genomic effects, ultimately leading to long-lasting immunosuppression. Whether the two activities-namely, the catalytic and signaling functions-are spatially segregated has been unclear. We found that, under conditions favoring signaling rather than catabolic events, IDO1 shifts from the cytosol to early endosomes. The event requires interaction with class IA phosphoinositide 3-kinases (PI3Ks), which become activated, resulting in full expression of the immunoregulatory phenotype in vivo in pDCs as resulting from IDO1-dependent signaling events. Thus, IDO1's spatial dynamics meet the needs for short-acting as well as durable mechanisms of immune suppression, both under acute and chronic inflammatory conditions. These data expand the theoretical basis for an IDO1-centered therapy in inflammation and autoimmunity.


Subject(s)
Indoleamine-Pyrrole 2,3,-Dioxygenase , Phosphatidylinositol 3-Kinases , Dendritic Cells/metabolism , Humans , Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Inflammation , Phosphatidylinositol 3-Kinases/genetics , Signal Transduction
11.
Int J Mol Sci ; 22(9)2021 Apr 28.
Article in English | MEDLINE | ID: mdl-33924971

ABSTRACT

The Aryl hydrocarbon receptor (AhR) is a critical regulator of both innate and adaptive immune responses, with potent immunomodulatory effects that makes this receptor an attractive molecular target for novel therapeutics. Accumulating evidence indicates that diverse-both host's and microbial-tryptophan metabolites profoundly regulate the immune system in the host via AhR, promoting either tolerance or immunity, largely as a function of the qualitative and quantitative nature of the metabolites being contributed by either source. Additional findings indicate that host and microbiota-derived tryptophan metabolic pathways can influence the outcome of immune responses to tumors. Here, we review recent studies on the role and modalities of AhR activation by various ligands, derived from either host-cell or microbial-cell tryptophan metabolic pathways, in the regulation of immune responses. Moreover, we highlight potential implications of those ligands and pathways in tumor immunotherapy, with particular relevance to checkpoint-blockade immune intervention strategies.


Subject(s)
Receptors, Aryl Hydrocarbon/metabolism , Tryptophan/metabolism , Animals , Humans , Immunotherapy , Ligands , Neoplasms/therapy
12.
Nature ; 511(7508): 184-90, 2014 Jul 10.
Article in English | MEDLINE | ID: mdl-24930766

ABSTRACT

Disease tolerance is the ability of the host to reduce the effect of infection on host fitness. Analysis of disease tolerance pathways could provide new approaches for treating infections and other inflammatory diseases. Typically, an initial exposure to bacterial lipopolysaccharide (LPS) induces a state of refractoriness to further LPS challenge (endotoxin tolerance). We found that a first exposure of mice to LPS activated the ligand-operated transcription factor aryl hydrocarbon receptor (AhR) and the hepatic enzyme tryptophan 2,3-dioxygenase, which provided an activating ligand to the former, to downregulate early inflammatory gene expression. However, on LPS rechallenge, AhR engaged in long-term regulation of systemic inflammation only in the presence of indoleamine 2,3-dioxygenase 1 (IDO1). AhR-complex-associated Src kinase activity promoted IDO1 phosphorylation and signalling ability. The resulting endotoxin-tolerant state was found to protect mice against immunopathology in Gram-negative and Gram-positive infections, pointing to a role for AhR in contributing to host fitness.


Subject(s)
Disease Resistance/genetics , Disease Resistance/immunology , Receptors, Aryl Hydrocarbon/metabolism , Animals , Bacterial Infections/immunology , Bacterial Infections/metabolism , Disease Resistance/drug effects , Endotoxemia/genetics , Endotoxemia/immunology , Endotoxemia/metabolism , Enzyme Activation/drug effects , Gene Expression Regulation/drug effects , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Inflammation/enzymology , Inflammation/genetics , Inflammation/metabolism , Kynurenine/metabolism , Lipopolysaccharides/pharmacology , Mice , Phosphorylation , Receptors, Aryl Hydrocarbon/genetics , Signal Transduction , Tryptophan Oxygenase/metabolism , src-Family Kinases/metabolism
13.
J Cell Mol Med ; 23(5): 3757-3761, 2019 05.
Article in English | MEDLINE | ID: mdl-30793469

ABSTRACT

The cytokine interleukin IL-35 is known to exert strong immunosuppressive functions. Indoleamine 2,3-dioxygenase 1 (IDO1) and Arginase 1 (Arg1) are metabolic enzymes that, expressed by dendritic cells (DCs), contribute to immunoregulation. Here, we explored any possible link between IL-35 and the activity of those enzymes. We transfected a single chain IL-35Ig gene construct in murine splenic DCs (DC35 ) and assessed any IDO1 and Arg1 activities as resulting from ectopic IL-35Ig expression, both in vitro and in vivo. Unlike Ido1, Arg1 expression was induced in vitro in DC35 , and it conferred an immunosuppressive phenotype on those cells, as revealed by a delayed-type hypersensitivity assay. Moreover, the in vivo onset of a tolerogenic phenotype in DC35 was associated with the detection of CD25+ CD39+ , rather than Foxp3+ , regulatory T cells. Therefore, Arg1, but not Ido1, expression in DC35 appears to be an early event in IL-35Ig-mediated immunosuppression.


Subject(s)
Arginase/immunology , Dendritic Cells/immunology , Immune Tolerance/immunology , Interleukins/immunology , Animals , Antigens, CD/immunology , Antigens, CD/metabolism , Apyrase/immunology , Apyrase/metabolism , Arginase/genetics , Arginase/metabolism , Dendritic Cells/metabolism , Female , Forkhead Transcription Factors/immunology , Forkhead Transcription Factors/metabolism , Immune Tolerance/genetics , Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics , Indoleamine-Pyrrole 2,3,-Dioxygenase/immunology , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Interleukin-2 Receptor alpha Subunit/immunology , Interleukin-2 Receptor alpha Subunit/metabolism , Interleukin-4/genetics , Interleukin-4/immunology , Interleukin-4/metabolism , Interleukins/genetics , Interleukins/metabolism , Mice, Inbred C57BL , Mice, Knockout , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/immunology , Transforming Growth Factor beta/metabolism
15.
J Cell Mol Med ; 21(1): 165-176, 2017 01.
Article in English | MEDLINE | ID: mdl-27696702

ABSTRACT

The enzyme indoleamine 2,3-dioxygenase 1 (IDO1) catalyses the initial, rate-limiting step in tryptophan (Trp) degradation, resulting in tryptophan starvation and the production of immunoregulatory kynurenines. IDO1's catalytic function has long been considered as the one mechanism responsible for IDO1-dependent immune suppression by dendritic cells (DCs), which are master regulators of the balance between immunity and tolerance. However, IDO1 also harbours immunoreceptor tyrosine-based inhibitory motifs, (ITIM1 and ITIM2), that, once phosphorylated, bind protein tyrosine phosphatases, (SHP-1 and SHP-2), and thus trigger an immunoregulatory signalling in DCs. This mechanism leads to sustained IDO1 expression, in a feedforward loop, which is particularly important in restraining autoimmunity and chronic inflammation. Yet, under specific conditions requiring that early and protective inflammation be unrelieved, tyrosine-phosphorylated ITIMs will instead bind the suppressor of cytokine signalling 3 (SOCS3), which drives IDO1 proteasomal degradation and shortens the enzyme half-life. To dissect any differential roles of the two IDO1's ITIMs, we generated protein mutants by replacing one or both ITIM-associated tyrosines with phospho-mimicking glutamic acid residues. Although all mutants lost their enzymic activity, the ITIM1 - but not ITIM2 mutant - did bind SHPs and conferred immunosuppressive effects on DCs, making cells capable of restraining an antigen-specific response in vivo. Conversely, the ITIM2 mutant would preferentially bind SOCS3, and IDO1's degradation was accelerated. Thus, it is the selective phosphorylation of either ITIM that controls the duration of IDO1 expression and function, in that it dictates whether enhanced tolerogenic signalling or shutdown of IDO1-dependent events will occur in a local microenvironment.


Subject(s)
Immunosuppressive Agents/immunology , Indoleamine-Pyrrole 2,3,-Dioxygenase/immunology , Tyrosine/immunology , Animals , Cytokines/immunology , Dendritic Cells/immunology , Female , Half-Life , Immune Tolerance/immunology , Kynurenine/immunology , Mice , Mice, Inbred C57BL , Phosphorylation/immunology , Protein Domains/immunology , Signal Transduction/immunology , Suppressor of Cytokine Signaling Proteins/immunology , Tryptophan/immunology
16.
J Nat Prod ; 80(6): 1939-1943, 2017 06 23.
Article in English | MEDLINE | ID: mdl-28525281

ABSTRACT

The aryl hydrocarbon receptor (AhR) is a transcription factor activated by a vast array of natural and synthetic ligands. It plays a pivotal role in numerous physiological and pathological responses, such as cell proliferation and differentiation, induction of xenobiotic metabolizing enzymes, response to environmental toxins, and several others. In this study, we investigated the ability of some natural compounds (oxyprenylated ferulic acid and umbelliferone derivatives) and their semisynthetic analogues (e.g., differently substituted 7-alkoxycoumarins) to activate AhR, using a reporter luciferase assay. Among them, we found that 7-isopentenyloxycoumarin was the best AhR activator. Boropinic acid, 7-but-2'-enyloxycoumarin, 7-(2',2'-dimethyl-n-propyloxy)coumarin, 7-benzyloxycoumarin, and 7-(3'-hydroxymethyl-3'-methylallyloxy)coumarin were also active, although to a lesser extent. All the compounds were also analyzed for their ability to inhibit AhR activation, using a reference ligand, 6-formylindolo[3,2-b]carbazole. Data recorded in the present investigation pointed out the importance of a 3,3-dimethylallyloxy side chain attached to the coumarin ring core as a key moiety for AhR activation.


Subject(s)
Coumarins/metabolism , Receptors, Aryl Hydrocarbon/metabolism , Animals , Carcinoma, Hepatocellular/drug therapy , Cell Differentiation , Coumarins/chemistry , Ligands , Mice , Molecular Structure , Receptors, Aryl Hydrocarbon/chemistry , Signal Transduction
17.
Mediators Inflamm ; 2017: 1380615, 2017.
Article in English | MEDLINE | ID: mdl-28356656

ABSTRACT

Experimental autoimmune encephalomyelitis (EAE) is an inflammatory, demyelinating disease of the CNS that mimics human multiple sclerosis (MS), and it is thought to be driven by Th1 and Th17 myelin-reactive cells. Although adaptive immunity is clearly pivotal in the pathogenesis of EAE, with an essential role of CD4+ T cells, little is known of early, innate responses in this experimental setting. CpG-rich oligodeoxynucleotides (ODNs), typically found in microbial genomes, are potent activators of TLR9 in plasmacytoid dendritic cells (pDCs). In this study, we compared the effects of two types of CpG, namely, type A and type B, on EAE. We found that treatment with CpG type A ODN (CpG-A), known to induce high amounts of IFN-α in pDCs, significantly reduced disease severity in EAE, relative to controls (12.63 ± 1.86 versus 23.49 ± 1.46, resp.; p = 0.001). Treatment also delayed onset of neurological deficits and reduced spinal cord demyelination, while increasing the percentage of splenic regulatory (Foxp3+ CD4+) T cells. CpG-A likewise reduced the levels of IL-17 and IFN-γ in the CNS. Mechanistic insight into those events showed that CpG-A promoted a regulatory phenotype in pDCs. Moreover, adoptive transfer of pDCs isolated from CpG-A-treated mice inhibited CNS inflammation and induced disease remission in acute-phase EAE. Our data thus identify a link between TLR9 activation by specific ligands and the induction of tolerance via innate immunity mechanisms.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/metabolism , Immunity, Innate , Oligodeoxyribonucleotides/metabolism , Animals , Dendritic Cells/cytology , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/immunology , Endotoxins/metabolism , Female , Inflammation , Ligands , Mice , Mice, Inbred C57BL , Multiple Sclerosis , Phenotype , Signal Transduction , Spleen/metabolism , T-Lymphocytes, Regulatory/cytology
18.
J Cell Mol Med ; 19(7): 1593-605, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25783564

ABSTRACT

Although human amniotic fluid does contain different populations of foetal-derived stem cells, scanty information is available on the stemness and the potential immunomodulatory activity of in vitro expanded, amniotic fluid stem cells. By means of a methodology unrequiring immune selection, we isolated and characterized different stem cell types from second-trimester human amniotic fluid samples (human amniotic fluid stem cells, HASCs). Of those populations, one was characterized by a fast doubling time, and cells were thus designated as fHASCs. Cells maintained their original phenotype under prolonged in vitro passaging, and they were able to originate embryoid bodies. Moreover, fHASCs exhibited regulatory properties when treated with interferon (IFN)-γ, including induction of the immunomodulatory enzyme indoleamine 2,3-dioxygenase 1 (IDO1). On coculture with human peripheral blood mononuclear cells, IFN-γ-treated fHASCs caused significantly decreased T-cell proliferation and increased frequency in CD4(+)  CD25(+)  FOXP3(+) regulatory T cells. Both effects required an intact IDO1 function and were cell contact-independent. An unprecedented finding in our study was that purified vesicles from IFN-γ-treated fHASCs abundantly expressed the functional IDO1 protein, and those vesicles were endowed with an fHASC-like regulatory function. In vivo, fHASCs were capable of immunoregulatory function, promoting allograft survival in a mouse model of allogeneic skin transplantation. This was concurrent with the expansion of CD4(+)  CD25(+)  Foxp3(+) T cells in graft-draining lymph nodes from recipient mice. Thus fHASCs, or vesicles thereof, may represent a novel opportunity for immunoregulatory maneuvers both in vitro and in vivo.


Subject(s)
Amniotic Fluid/cytology , Immunomodulation , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Stem Cells/immunology , Stem Cells/metabolism , Adult , Allografts/drug effects , Animals , Biomarkers/metabolism , Cell Communication/drug effects , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cell Separation , Cell Shape/drug effects , Clone Cells , Embryoid Bodies/cytology , Graft Survival/drug effects , Humans , Immunomodulation/drug effects , Interferon-gamma/pharmacology , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, SCID , Phenotype , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Stem Cells/cytology , Stem Cells/drug effects , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology
19.
Eur J Immunol ; 44(11): 3192-200, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25256754

ABSTRACT

An increased understanding of the importance of microbiota in shaping the host's immune and metabolic activities has rendered fungal interactions with their hosts more complex than previously appreciated. The aryl hydrocarbon receptor (AhR) has a pivotal role in connecting tryptophan catabolism by microbial communities and the host's own pathway of tryptophan metabolite production with the orchestration of T-cell function. AhR activation by a Lactobacillus-derived AhR ligand leads to the production of IL-22 to the benefit of mucosal defense mechanisms, an activity upregulated in the absence of the host tryptophan catabolic enzyme, indoleamine 2,3-dioxygenase 1 (IDO1), which is required for protection from fungal diseases ("disease tolerance"). As AhR activation in turn leads to the activation-in a feedback fashion-of IDO1, the regulatory loop involving AhR and IDO1 may have driven the coevolution of commensal fungi with the mammalian immune system and the microbiota, to the benefit of host survival and fungal commensalism. This review will discuss the essential help the microbiota provides in controlling the balance between the dual nature of the fungal-host relationship, namely, commensalism vs. infection.


Subject(s)
Fungi/immunology , Mycoses/immunology , Receptors, Aryl Hydrocarbon/metabolism , Symbiosis/immunology , Tryptophan/metabolism , Fungi/pathogenicity , Humans , Immune Tolerance/immunology , Indoleamine-Pyrrole 2,3,-Dioxygenase/biosynthesis , Interleukins/biosynthesis , Interleukins/immunology , Lactobacillus/metabolism , Microbiota , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Regulatory/immunology , Interleukin-22
20.
PLoS Pathog ; 9(7): e1003486, 2013.
Article in English | MEDLINE | ID: mdl-23853597

ABSTRACT

The ability to tolerate Candida albicans, a human commensal of the gastrointestinal tract and vagina, implicates that host defense mechanisms of resistance and tolerance cooperate to limit fungal burden and inflammation at the different body sites. We evaluated resistance and tolerance to the fungus in experimental and human vulvovaginal candidiasis (VVC) as well as in recurrent VVC (RVVC). Resistance and tolerance mechanisms were both activated in murine VVC, involving IL-22 and IL-10-producing regulatory T cells, respectively, with a major contribution by the enzyme indoleamine 2,3-dioxygenase 1 (IDO1). IDO1 was responsible for the production of tolerogenic kynurenines, such that replacement therapy with kynurenines restored immunoprotection to VVC. In humans, two functional genetic variants in IL22 and IDO1 genes were found to be associated with heightened resistance to RVVC, and they correlated with increased local expression of IL-22, IDO1 and kynurenines. Thus, IL-22 and IDO1 are crucial in balancing resistance with tolerance to Candida, their deficiencies are risk factors for RVVC, and targeting tolerance via therapeutic kynurenines may benefit patients with RVVC.


Subject(s)
Candida albicans/immunology , Candidiasis, Vulvovaginal/immunology , Immune Tolerance , Immunity, Mucosal , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Interleukins/biosynthesis , T-Lymphocytes, Regulatory/immunology , Animals , Candida albicans/drug effects , Candida albicans/isolation & purification , Candidiasis, Vulvovaginal/genetics , Candidiasis, Vulvovaginal/metabolism , Candidiasis, Vulvovaginal/microbiology , Female , Genetic Association Studies , Genetic Variation , Humans , Immune Tolerance/drug effects , Immunity, Mucosal/drug effects , Immunologic Factors/metabolism , Immunologic Factors/therapeutic use , Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics , Interleukin-10/biosynthesis , Interleukins/genetics , Kynurenine/metabolism , Kynurenine/therapeutic use , Mice , Mice, Inbred C57BL , Mice, SCID , Recurrence , Severe Combined Immunodeficiency/drug therapy , Severe Combined Immunodeficiency/immunology , Severe Combined Immunodeficiency/physiopathology , Specific Pathogen-Free Organisms , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/metabolism , Interleukin-22
SELECTION OF CITATIONS
SEARCH DETAIL