Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Small ; 13(12)2017 03.
Article in English | MEDLINE | ID: mdl-28090735

ABSTRACT

A clinically relevant magneto-optical technique (fd-FRS, frequency-domain Faraday rotation spectroscopy) for characterizing proteins using antibody-functionalized magnetic nanoparticles (MNPs) is demonstrated. This technique distinguishes between the Faraday rotation of the solvent, iron oxide core, and functionalization layers of polyethylene glycol polymers (spacer) and model antibody-antigen complexes (anti-BSA/BSA, bovine serum albumin). A detection sensitivity of ≈10 pg mL-1 and broad detection range of 10 pg mL-1 ≲ cBSA ≲ 100 µg mL-1 are observed. Combining this technique with predictive analyte binding models quantifies (within an order of magnitude) the number of active binding sites on functionalized MNPs. Comparative enzyme-linked immunosorbent assay (ELISA) studies are conducted, reproducing the manufacturer advertised BSA ELISA detection limits from 1 ng mL-1 ≲ cBSA ≲ 500 ng mL-1 . In addition to the increased sensitivity, broader detection range, and similar specificity, fd-FRS can be conducted in less than ≈30 min, compared to ≈4 h with ELISA. Thus, fd-FRS is shown to be a sensitive optical technique with potential to become an efficient diagnostic in the chemical and biomolecular sciences.


Subject(s)
High-Throughput Screening Assays/methods , Rotation , Serum Albumin, Bovine/analysis , Spectrum Analysis , Animals , Antibodies/chemistry , Cattle , Magnetite Nanoparticles/chemistry , Magnetite Nanoparticles/ultrastructure , Reproducibility of Results , Serum Albumin, Bovine/chemistry
2.
Langmuir ; 30(34): 10548-55, 2014 Sep 02.
Article in English | MEDLINE | ID: mdl-25102248

ABSTRACT

Experimental and numerical investigations of water microdroplet evaporation on heated, laser patterned polymer substrates are reported. The study is focused on both (i) controlling a droplet's contact line dynamics during evaporation to identifying how the contact line influences evaporative heat transfer and (ii) validating numerical simulations with experimental data. Droplets are formed on the polymer surface using a bottom-up methodology, where a computer-controlled syringe pump feeds water through a 200 µm diameter fluid channel within the heated polymer substrate. This methodology facilitates precise control of the droplet's growth rate, size, and inlet temperature. In addition to this microchannel supply line, the substrate surfaces are laser patterned with a moatlike trench around the fluid-channel outlet, adding additional control of the droplet's contact line motion, area, and contact angle. In comparison to evaporation on a nonpatterned polymer surface, the laser patterned trench increases contact line pinning time by ∼60% of the droplet's lifetime. Numerical simulations of diffusion controlled evaporation are compared the experimental data with a pinned contact line. These diffusion based simulations consistently over predict the droplet's evaporation rate. In efforts to improve this model, a temperature distribution along the droplet's liquid-vapor interface is imposed to account for the concentration distribution of saturated vapor along the interface, which yields improved predictions within 2-4% of the experimental data throughout the droplet's lifetime on heated substrates.

3.
Langmuir ; 26(16): 13272-86, 2010 Aug 17.
Article in English | MEDLINE | ID: mdl-20695569

ABSTRACT

A comprehensive numerical and experimental investigation on micrometer-sized water droplet impact dynamics and evaporation on an unheated, flat, dry surface is conducted from the standpoint of spray-cooling technology. The axisymmetric time-dependent governing equations of continuity, momentum, energy, and species are solved. Surface tension, wall adhesion effect, gravitational body force, contact line dynamics, and evaporation are accounted for in the governing equations. The explicit volume of fluid (VOF) model with dynamic meshing and variable-time stepping in serial and parallel processors is used to capture the time-dependent liquid-gas interface motion throughout the computational domain. The numerical model includes temperature- and species-dependent thermodynamic and transport properties. The contact line dynamics and the evaporation rate are predicted using Blake's and Schrage's molecular kinetic models, respectively. An extensive grid independence study was conducted. Droplet impingement and evaporation data are acquired with a standard dispensing/imaging system and high-speed photography. The numerical results are compared with measurements reported in the literature for millimeter-size droplets and with current microdroplet experiments in terms of instantaneous droplet shape and temporal spread (R/D(0) or R/R(E)), flatness ratio (H/D(0)), and height (H/H(E)) profiles, as well as temporal volume (inverted A) profile. The Weber numbers (We) for impinging droplets vary from 1.4 to 35.2 at nearly constant Ohnesorge number (Oh) of approximately 0.025-0.029. Both numerical and experimental results show that there is air bubble entrapment due to impingement. Numerical results indicate that Blake's formulation provides better results than the static (SCA) and dynamic contact angle (DCA) approach in terms of temporal evolution of R/D(0) and H/D(0) (especially at the initial stages of spreading) and equilibrium flatness ratio (H(E)/D(0)). Blake's contact line dynamics is dependent on the wetting parameter (K(W)). Both numerical and experimental results suggest that at 4.5 < We < 11.0 the short-time dynamics of microdroplet impingement corresponds to a transition regime between two different spreading regimes (i.e., for We < or = 4.5, impingement is followed by spreading, then contact line pinning and then inertial oscillations, and for We > or = 11.0, impingement is followed by spreading, then recoiling, then contact line pinning and then inertial oscillations). Droplet evaporation can be satisfactorily modeled using the Schrage model, since it predicts both well-defined transient and quasi-steady evaporation stages. The model compares well with measurements in terms of flatness ratio (H/H(E)) before depinning occurs. Toroidal vortices are formed on the droplet surface in the gaseous phase due to buoyancy-induced Rayleigh-Taylor instability that enhances convection.

4.
Sci Rep ; 9(1): 20074, 2019 Dec 27.
Article in English | MEDLINE | ID: mdl-31882681

ABSTRACT

Hemiwicking is the phenomena where a liquid wets a textured surface beyond its intrinsic wetting length due to capillary action and imbibition. In this work, we derive a simple analytical model for hemiwicking in micropillar arrays. The model is based on the combined effects of capillary action dictated by interfacial and intermolecular pressures gradients within the curved liquid meniscus and fluid drag from the pillars at ultra-low Reynolds numbers [Formula: see text]. Fluid drag is conceptualized via a critical Reynolds number: [Formula: see text], where v0 corresponds to the maximum wetting speed on a flat, dry surface and x0 is the extension length of the liquid meniscus that drives the bulk fluid toward the adsorbed thin-film region. The model is validated with wicking experiments on different hemiwicking surfaces in conjunction with v0 and x0 measurements using Water [Formula: see text], viscous FC-70 [Formula: see text] and lower viscosity Ethanol [Formula: see text].

5.
J Vis Exp ; (142)2018 12 18.
Article in English | MEDLINE | ID: mdl-30614489

ABSTRACT

Hemiwicking is a process where a fluid wets a patterned surface beyond its normal wetting length due to a combination of capillary action and imbibition. This wetting phenomenon is important in many technical fields ranging from physiology to aerospace engineering. Currently, several different techniques exist for fabricating hemiwicking structures. These conventional methods, however, are often time consuming and are difficult to scale-up for large areas or are difficult to customize for specific, nonhomogeneous patterning geometries. The presented protocol provides researchers with a simple, scalable, and cost-effective method for fabricating micro-patterned hemiwicking surfaces. The method fabricates wicking structures through the use of stamp printing, polydimethylsiloxane (PDMS) molding, and thin-film surface coatings. The protocol is demonstrated for hemiwicking with ethanol on PDMS micropillar arrays coated with a 70 nm thick aluminum thin-film.


Subject(s)
Equipment Design , Printing, Three-Dimensional , Wettability , Microtechnology/methods , Surface Properties
6.
ACS Omega ; 3(1): 1154-1158, 2018 Jan 31.
Article in English | MEDLINE | ID: mdl-31457957

ABSTRACT

We present a deposition technique termed evaporation-assisted deposition (EAD). The technique is based on a coupled evaporation-to-condensation transfer process at atmospheric conditions, where graphene oxide (GO) is transferred to a Si wafer via the vapor flux between an evaporating droplet and the Si surface. The EAD process is monitored with visible and infrared cameras. GO deposits on Si are characterized by both Raman spectroscopy and X-ray photoelectron spectroscopy. We find that a scaled energy barrier for the condensate is required for EAD, which corresponds to specific solution-substrate properties that exhibit a minimized free energy barrier at the solid-liquid-vapor interface.

7.
Nanoscale ; 5(7): 2642-6, 2013 Apr 07.
Article in English | MEDLINE | ID: mdl-23446360

ABSTRACT

A simple, reliable, and non-destructive approach based on contact angle measurements is described for predicting the activity of catalyst supports in carbon nanotube (CNT) carpet growth. The basic component of the surface free energy of different alumina supports - determined from the van Oss-Good-Chaudhury model and the Young-Dupré equation - was found to correlate with the activity of Fe catalyst during water-assisted CVD growth of CNT carpets.

8.
ACS Nano ; 6(4): 3262-8, 2012 Apr 24.
Article in English | MEDLINE | ID: mdl-22456273

ABSTRACT

Controlling coalescence events in a heterogeneous ensemble of condensing droplets on a surface is an outstanding fundamental challenge in surface and interfacial sciences, with a broad practical importance in applications ranging from thermal management of high-performance electronic devices to moisture management in high-humidity environments. Nature-inspired superhydrophobic surfaces have been actively explored to enhance heat and mass transfer rates by achieving favorable dynamics during dropwise condensation; however, the effectiveness of such chemically homogeneous surfaces has been limited because condensing droplets tend to form as pinned Wenzel drops rather than mobile Cassie ones. Here, we introduce an amphiphilic nanostructured surface, consisting of a hydrophilic base with hydrophobic tips, which promotes the periodic regeneration of nucleation sites for small droplets, thus rendering the surface self-rejuvenating. This unique amphiphilic nanointerface generates an arrangement of condensed Wenzel droplets that are fluidically linked by a wetted sublayer, promoting previously unobserved coalescence events where numerous droplets simultaneously merge, without direct contact. Such ensemble coalescences rapidly create fresh nucleation sites, thereby shifting the overall population toward smaller droplets and enhancing the rates of mass and heat transfer during condensation.


Subject(s)
Hydrophobic and Hydrophilic Interactions , Nanostructures/chemistry , Hot Temperature , Surface Properties
9.
Langmuir ; 23(18): 9221-8, 2007 Aug 28.
Article in English | MEDLINE | ID: mdl-17655335

ABSTRACT

Measurements of particle flows driven by temperature gradients are conducted as a function of temperature on aqueous suspensions of polystyrene nanoparticles and proteins of T4 lysozyme and mutant variants of T4 lysozyme. The thermodiffusion coefficients are measured using a microfluidic beam deflection technique on suspensions with particle concentrations on the order of 1 vol %. At T < or ~ 20 degrees C, all of the nanoparticles studied migrate to the hot regions of the fluid; i.e., the thermodiffusion coefficient is negative. At higher temperature, T > or ~ 50 degrees C, the thermodiffusion coefficient is positive with a value consistent with the predictions of a theoretical model originally proposed by Derjaguin that is based on the enthalpy changes due to polarization of water molecules in the double layer.

10.
Langmuir ; 21(12): 5317-23, 2005 Jun 07.
Article in English | MEDLINE | ID: mdl-15924455

ABSTRACT

We use a micrometer-scale optical beam deflection technique to measure the thermodiffusion coefficient D(T) at room temperature (approximately 24 degrees C) of dilute aqueous suspensions of charged polystyrene spheres with different surface functionalities. In solutions with large concentrations of monovalent salts, < or approximately = 100 mM, the thermodiffusion coefficients for 26 nm spheres with carboxyl functionality can be varied within the range -0.9 x 10(-7) cm2 s(-1) K(-1) < D(T) < 1.5 x 10(-7) cm2 s(-1) K(-1) by changing the ionic species in solution; in this case, D(T) is the product of the electrophoretic mobility mu(E) and the Seebeck coefficient of the electrolyte, S(e) = (Q(C)* - Q(A)*)/2eT, D(T) = -S(e) mu(E), where and are the single ion heats of transport of the cationic and anionic species, respectively. In low ionic strength solutions of LiCl, < or approximately = 5 mM, and particle concentrations < or approximately = 2 wt %, D(T) is negative, independent of particle concentration and independent of the Debye length; D(T) = -0.73 +/- 0.05 x 10(-7) cm2 s(-1) K(-1).

SELECTION OF CITATIONS
SEARCH DETAIL