Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Sensors (Basel) ; 22(13)2022 Jun 26.
Article in English | MEDLINE | ID: mdl-35808328

ABSTRACT

Advances in information technology (IT) and operation technology (OT) accelerate the development of manufacturing systems (MS) consisting of integrated circuits (ICs), modules, and systems, toward Industry 4.0. However, the existing MS does not support comprehensive identity forensics for the whole system, limiting its ability to adapt to equipment authentication difficulties. Furthermore, the development of trust imposed during their crosswise collaborations with suppliers and other manufacturers in the supply chain is poorly maintained. In this paper, a trust chain framework with a comprehensive identification mechanism is implemented for the designed MS system, which is based and created on the private blockchain in conjunction with decentralized database systems to boost the flexibility, traceability, and identification of the IC-module-system. Practical implementations are developed using a functional prototype. First, the decentralized application (DApp) and the smart contracts are proposed for constructing the new trust chain under the proposed comprehensive identification mechanism by using blockchain technology. In addition, the blockchain addresses of IC, module, and system are automatically registered to InterPlanetary File System (IPFS), individually. In addition, their corresponding hierarchical CID (content identifier) values are organized by using Merkle DAG (Directed Acyclic Graph), which is employed via the hierarchical content identifier mechanism (HCIDM) proposed in this paper. Based on insights obtained from this analysis, the trust chain based on HCIDM can be applied to any MS system, for example, this trust chain could be used to prevent the counterfeit modules and ICs employed in the monitoring system of a semiconductor factory environment. The evaluation results show that the proposed scheme could work in practice under the much lower costs, compared to the public blockchain, with a total cost of 0.002094 Ether. Finally, this research is developed an innovation trust chain mechanism that could be provided the system-level security for any MS toward Industrial 4.0 in order to meet the requirements of both manufacturing innovation and product innovation in Sustainable Development Goals (SDGs).


Subject(s)
Blockchain , Technology
2.
Sensors (Basel) ; 21(13)2021 Jul 04.
Article in English | MEDLINE | ID: mdl-34283140

ABSTRACT

The sparse data in PM2.5 air quality monitoring systems is frequently happened on large-scale smart city sensing applications, which is collected via massive sensors. Moreover, it could be affected by inefficient node deployment, insufficient communication, and fragmented records, which is the main challenge of the high-resolution prediction system. In addition, data privacy in the existing centralized air quality prediction system cannot be ensured because the data which are mined from end sensory nodes constantly exposed to the network. Therefore, this paper proposes a novel edge computing framework, named Federated Compressed Learning (FCL), which provides efficient data generation while ensuring data privacy for PM2.5 predictions in the application of smart city sensing. The proposed scheme inherits the basic ideas of the compression technique, regional joint learning, and considers a secure data exchange. Thus, it could reduce the data quantity while preserving data privacy. This study would like to develop a green energy-based wireless sensing network system by using FCL edge computing framework. It is also one of key technologies of software and hardware co-design for reconfigurable and customized sensing devices application. Consequently, the prototypes are developed in order to validate the performances of the proposed framework. The results show that the data consumption is reduced by more than 95% with an error rate below 5%. Finally, the prediction results based on the FCL will generate slightly lower accuracy compared with centralized training. However, the data could be heavily compacted and securely transmitted in WSNs.


Subject(s)
Air Pollution , Privacy , Cities , Particulate Matter , Software
SELECTION OF CITATIONS
SEARCH DETAIL