Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
1.
Mol Cell ; 82(23): 4403-4404, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36459982

ABSTRACT

Wu et al.1 characterize Cas12m, a compact Cas protein that silences transcription without cleaving DNA and is a prototype protein of the novel CRISPR-Cas subtype V-M.


Subject(s)
CRISPR-Cas Systems , DNA , DNA/genetics
2.
Nucleic Acids Res ; 52(10): 6079-6091, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38661215

ABSTRACT

CRISPR-Cas systems can be utilized as programmable-spectrum antimicrobials to combat bacterial infections. However, how CRISPR nucleases perform as antimicrobials across target sites and strains remains poorly explored. Here, we address this knowledge gap by systematically interrogating the use of CRISPR antimicrobials using multidrug-resistant and hypervirulent strains of Klebsiella pneumoniae as models. Comparing different Cas nucleases, DNA-targeting nucleases outperformed RNA-targeting nucleases based on the tested targets. Focusing on AsCas12a that exhibited robust targeting across different strains, we found that the elucidated modes of escape varied widely, restraining opportunities to enhance killing. We also encountered individual guide RNAs yielding different extents of clearance across strains, which were linked to an interplay between improper gRNA folding and strain-specific DNA repair and survival. To explore features that could improve targeting across strains, we performed a genome-wide screen in different K. pneumoniae strains that yielded guide design rules and trained an algorithm for predicting guide efficiency. Finally, we showed that Cas12a antimicrobials can be exploited to eliminate K. pneumoniae when encoded in phagemids delivered by T7-like phages. Altogether, our results highlight the importance of evaluating antimicrobial activity of CRISPR antimicrobials across relevant strains and define critical parameters for efficient CRISPR-based targeting.


Subject(s)
CRISPR-Cas Systems , Klebsiella pneumoniae , RNA, Guide, CRISPR-Cas Systems , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , RNA, Guide, CRISPR-Cas Systems/genetics , RNA, Guide, CRISPR-Cas Systems/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Endodeoxyribonucleases/metabolism , Endodeoxyribonucleases/genetics , Klebsiella Infections/drug therapy , Klebsiella Infections/microbiology , CRISPR-Associated Proteins/metabolism , CRISPR-Associated Proteins/genetics , Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Clustered Regularly Interspaced Short Palindromic Repeats , Genome, Bacterial/genetics , Gene Editing/methods , Humans
3.
Mol Cell ; 66(5): 721-728.e3, 2017 Jun 01.
Article in English | MEDLINE | ID: mdl-28552617

ABSTRACT

A major limitation in using bacteriophage-based applications is their narrow host range. Approaches for extending the host range have focused primarily on lytic phages in hosts supporting their propagation rather than approaches for extending the ability of DNA transduction into phage-restrictive hosts. To extend the host range of T7 phage for DNA transduction, we have designed hybrid particles displaying various phage tail/tail fiber proteins. These modular particles were programmed to package and transduce DNA into hosts that restrict T7 phage propagation. We have also developed an innovative generalizable platform that considerably enhances DNA transfer into new hosts by artificially selecting tails that efficiently transduce DNA. In addition, we have demonstrated that the hybrid particles transduce desired DNA into desired hosts. This study thus critically extends and improves the ability of the particles to transduce DNA into novel phage-restrictive hosts, providing a platform for myriad applications that require this ability.


Subject(s)
Bacteriophage T7/genetics , DNA, Bacterial/genetics , DNA, Viral/genetics , Escherichia coli/genetics , Genetic Vectors , Klebsiella pneumoniae/genetics , Shigella sonnei/genetics , Transduction, Genetic/methods , Virion , DNA, Bacterial/biosynthesis , DNA, Viral/biosynthesis , Escherichia coli/metabolism , Escherichia coli/virology , Gene Expression Regulation, Bacterial , Gene Expression Regulation, Viral , Klebsiella pneumoniae/metabolism , Klebsiella pneumoniae/virology , Shigella sonnei/metabolism , Shigella sonnei/virology
4.
Nucleic Acids Res ; 51(14): 7552-7562, 2023 08 11.
Article in English | MEDLINE | ID: mdl-37326009

ABSTRACT

Natural prokaryotic defense via the CRISPR-Cas system requires spacer integration into the CRISPR array in a process called adaptation. To search for adaptation proteins with enhanced capabilities, we established a robust perpetual DNA packaging and transfer (PeDPaT) system that uses a strain of T7 phage to package plasmids and transfer them without killing the host, and then uses a different strain of T7 phage to repeat the cycle. We used PeDPaT to identify better adaptation proteins-Cas1 and Cas2-by enriching mutants that provide higher adaptation efficiency. We identified two mutant Cas1 proteins that show up to 10-fold enhanced adaptation in vivo. In vitro, one mutant has higher integration and DNA binding activities, and another has a higher disintegration activity compared to the wild-type Cas1. Lastly, we showed that their specificity for selecting a protospacer adjacent motif is decreased. The PeDPaT technology may be used for many robust screens requiring efficient and effortless DNA transduction.


Subject(s)
CRISPR-Associated Proteins , Escherichia coli Proteins , Escherichia coli , CRISPR-Associated Proteins/genetics , CRISPR-Associated Proteins/metabolism , CRISPR-Cas Systems , DNA/genetics , DNA/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Plasmids/genetics
5.
Mol Cell ; 61(6): 797-808, 2016 Mar 17.
Article in English | MEDLINE | ID: mdl-26949040

ABSTRACT

Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) proteins constitute an adaptive immune system in prokaryotes. The system preserves memories of prior infections by integrating short segments of foreign DNA, termed spacers, into the CRISPR array in a process termed adaptation. During the past 3 years, significant progress has been made on the genetic requirements and molecular mechanisms of adaptation. Here we review these recent advances, with a focus on the experimental approaches that have been developed, the insights they generated, and a proposed mechanism for self- versus non-self-discrimination during the process of spacer selection. We further describe the regulation of adaptation and the protein players involved in this fascinating process that allows bacteria and archaea to harbor adaptive immunity.


Subject(s)
Adaptive Immunity/genetics , CRISPR-Cas Systems/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Prokaryotic Cells/immunology , Archaea/genetics , Archaea/immunology , Bacteria/genetics , Bacteria/immunology , CRISPR-Cas Systems/immunology , Clustered Regularly Interspaced Short Palindromic Repeats/immunology
6.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Article in English | MEDLINE | ID: mdl-34074772

ABSTRACT

Bacteriophages (phages) have evolved efficient means to take over the machinery of the bacterial host. The molecular tools at their disposal may be applied to manipulate bacteria and to divert molecular pathways at will. Here, we describe a bacterial growth inhibitor, gene product T5.015, encoded by the T5 phage. High-throughput sequencing of genomic DNA of bacterial mutants, resistant to this inhibitor, revealed disruptive mutations in the Escherichia coli ung gene, suggesting that growth inhibition mediated by T5.015 depends on the uracil-excision activity of Ung. We validated that growth inhibition is abrogated in the absence of ung and confirmed physical binding of Ung by T5.015. In addition, biochemical assays with T5.015 and Ung indicated that T5.015 mediates endonucleolytic activity at abasic sites generated by the base-excision activity of Ung. Importantly, the growth inhibition resulting from the endonucleolytic activity is manifested by DNA replication and cell division arrest. We speculate that the phage uses this protein to selectively cause cleavage of the host DNA, which possesses more misincorporated uracils than that of the phage. This protein may also enhance phage utilization of the available resources in the infected cell, since halting replication saves nucleotides, and stopping cell division maintains both daughters of a dividing cell.


Subject(s)
Bacteriophages/genetics , Bacteriophages/physiology , DNA/metabolism , Deoxyuracil Nucleotides/metabolism , Cell Cycle Checkpoints , Cell Division , Endonucleases , Escherichia coli/genetics , High-Throughput Nucleotide Sequencing , Mutation , Uracil/metabolism
7.
RNA Biol ; 20(1): 830-835, 2023 01.
Article in English | MEDLINE | ID: mdl-37846029

ABSTRACT

Most recently developed phage engineering technologies are based on the CRISPR-Cas system. Here, we present a non-CRISPR-based method for genetically engineering the Escherichia coli phages T5, T7, P1, and λ by adapting the pORTMAGE technology, which was developed for engineering bacterial genomes. The technology comprises E. coli harbouring a plasmid encoding a potent recombinase and a gene transiently silencing a repair system. Oligonucleotides with the desired phage mutation are electroporated into E. coli followed by infection of the target bacteriophage. The high efficiency of this technology, which yields 1-14% of desired recombinants, allows low-throughput screening for the desired mutant. We have demonstrated the use of this technology for single-base substitutions, for deletions of 50-201 bases, for insertions of 20 bases, and for four different phages. The technology may also be readily modified for use across many additional bacterial and phage strains.[Figure: see text].


Subject(s)
Bacteriophages , Bacteriophages/genetics , Escherichia coli/genetics , CRISPR-Cas Systems , Mutation , Technology
8.
Nucleic Acids Res ; 48(10): 5397-5406, 2020 06 04.
Article in English | MEDLINE | ID: mdl-32338761

ABSTRACT

BREX (for BacteRiophage EXclusion) is a superfamily of common bacterial and archaeal defence systems active against diverse bacteriophages. While the mechanism of BREX defence is currently unknown, self versus non-self differentiation requires methylation of specific asymmetric sites in host DNA by BrxX (PglX) methyltransferase. Here, we report that T7 bacteriophage Ocr, a DNA mimic protein that protects the phage from the defensive action of type I restriction-modification systems, is also active against BREX. In contrast to the wild-type phage, which is resistant to BREX defence, T7 lacking Ocr is strongly inhibited by BREX, and its ability to overcome the defence could be complemented by Ocr provided in trans. We further show that Ocr physically associates with BrxX methyltransferase. Although BREX+ cells overproducing Ocr have partially methylated BREX sites, their viability is unaffected. The result suggests that, similar to its action against type I R-M systems, Ocr associates with as yet unidentified BREX system complexes containing BrxX and neutralizes their ability to both methylate and exclude incoming phage DNA.


Subject(s)
Bacteriophage T7/physiology , Viral Proteins/metabolism , Bacteriophage T7/genetics , DNA Methylation , DNA Modification Methylases/metabolism , Escherichia coli/enzymology , Escherichia coli/genetics , Escherichia coli/virology , Plasmids , Viral Proteins/genetics
9.
EMBO Rep ; 20(8): e48269, 2019 08.
Article in English | MEDLINE | ID: mdl-31267640

ABSTRACT

Biasing the sex ratio of populations of different organisms, including plants, insects, crustacean, and fish, has been demonstrated by genetic and non-genetic approaches. However, biasing the sex ratio of mammalian populations has not been demonstrated genetically. Here, we provide a first proof of concept for such a genetic system in mammals by crossing two genetically engineered mouse lines. The maternal line encodes a functional Cas9 protein on an autosomal chromosome, whereas the paternal line encodes guide RNAs on the Y chromosome targeting vital mouse genes. After fertilization, the presence of both the Y-encoded guide RNAs from the paternal sperm and the Cas9 protein from the maternal egg targets the vital genes in males. We show that these genes are specifically targeted in males and that this breeding consequently self-destructs solely males. Our results pave the way for a genetic system that allows biased sex production of livestock.


Subject(s)
Chromosomes, Mammalian , Gene Editing/methods , Genome , Sex Determination Processes , Sex Ratio , Animals , Breeding , CRISPR-Associated Protein 9/genetics , CRISPR-Associated Protein 9/metabolism , CRISPR-Cas Systems , Clustered Regularly Interspaced Short Palindromic Repeats , Crosses, Genetic , Female , Fertilization , Male , Mice , Oocytes/cytology , Oocytes/metabolism , RNA, Guide, Kinetoplastida/genetics , RNA, Guide, Kinetoplastida/metabolism , Spermatozoa/cytology , Spermatozoa/metabolism
10.
Nature ; 520(7548): 505-510, 2015 Apr 23.
Article in English | MEDLINE | ID: mdl-25874675

ABSTRACT

CRISPR-Cas (clustered, regularly interspaced short palindromic repeats coupled with CRISPR-associated proteins) is a bacterial immunity system that protects against invading phages or plasmids. In the process of CRISPR adaptation, short pieces of DNA ('spacers') are acquired from foreign elements and integrated into the CRISPR array. So far, it has remained a mystery how spacers are preferentially acquired from the foreign DNA while the self chromosome is avoided. Here we show that spacer acquisition is replication-dependent, and that DNA breaks formed at stalled replication forks promote spacer acquisition. Chromosomal hotspots of spacer acquisition were confined by Chi sites, which are sequence octamers highly enriched on the bacterial chromosome, suggesting that these sites limit spacer acquisition from self DNA. We further show that the avoidance of self is mediated by the RecBCD double-stranded DNA break repair complex. Our results suggest that, in Escherichia coli, acquisition of new spacers largely depends on RecBCD-mediated processing of double-stranded DNA breaks occurring primarily at replication forks, and that the preference for foreign DNA is achieved through the higher density of Chi sites on the self chromosome, in combination with the higher number of forks on the foreign DNA. This model explains the strong preference to acquire spacers both from high copy plasmids and from phages.


Subject(s)
Adaptation, Physiological , Bacteriophages/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , DNA, Bacterial/genetics , DNA, Viral/genetics , Escherichia coli/genetics , Plasmids/genetics , CRISPR-Cas Systems/genetics , Consensus Sequence/genetics , DNA Breaks, Double-Stranded , DNA Repair , DNA Replication/genetics , Exodeoxyribonuclease V/metabolism , Models, Biological
11.
Mol Cell ; 50(1): 136-48, 2013 Apr 11.
Article in English | MEDLINE | ID: mdl-23478446

ABSTRACT

Toxin-antitoxin (TA) modules, composed of a toxic protein and a counteracting antitoxin, play important roles in bacterial physiology. We examined the experimental insertion of 1.5 million genes from 388 microbial genomes into an Escherichia coli host using more than 8.5 million random clones. This revealed hundreds of genes (toxins) that could only be cloned when the neighboring gene (antitoxin) was present on the same clone. Clustering of these genes revealed TA families widespread in bacterial genomes, some of which deviate from the classical characteristics previously described for such modules. Introduction of these genes into E. coli validated that the toxin toxicity is mitigated by the antitoxin. Infection experiments with T7 phage showed that two of the new modules can provide resistance against phage. Moreover, our experiments revealed an "antidefense" protein in phage T7 that neutralizes phage resistance. Our results expose active fronts in the arms race between bacteria and phage.


Subject(s)
Antitoxins/genetics , Bacterial Toxins/genetics , Cloning, Molecular/methods , Escherichia coli Proteins/genetics , Escherichia coli/genetics , Genome, Bacterial , Antitoxins/metabolism , Bacterial Toxins/metabolism , Bacteriophage T7/pathogenicity , Escherichia coli/growth & development , Escherichia coli/metabolism , Escherichia coli/virology , Escherichia coli Proteins/metabolism , Host-Pathogen Interactions , Multigene Family , Reproducibility of Results , Sequence Analysis, DNA , Time Factors , Virulence
12.
Proc Natl Acad Sci U S A ; 115(23): E5353-E5362, 2018 06 05.
Article in English | MEDLINE | ID: mdl-29789383

ABSTRACT

T7 development in Escherichia coli requires the inhibition of the housekeeping form of the bacterial RNA polymerase (RNAP), Eσ70, by two T7 proteins: Gp2 and Gp5.7. Although the biological role of Gp2 is well understood, that of Gp5.7 remains to be fully deciphered. Here, we present results from functional and structural analyses to reveal that Gp5.7 primarily serves to inhibit EσS, the predominant form of the RNAP in the stationary phase of growth, which accumulates in exponentially growing E. coli as a consequence of the buildup of guanosine pentaphosphate [(p)ppGpp] during T7 development. We further demonstrate a requirement of Gp5.7 for T7 development in E. coli cells in the stationary phase of growth. Our finding represents a paradigm for how some lytic phages have evolved distinct mechanisms to inhibit the bacterial transcription machinery to facilitate phage development in bacteria in the exponential and stationary phases of growth.


Subject(s)
Bacterial Proteins/metabolism , Bacteriophage T7/metabolism , DNA-Directed RNA Polymerases/antagonists & inhibitors , Escherichia coli/virology , Repressor Proteins/metabolism , Sigma Factor/metabolism , Bacteriophage T7/enzymology , Bacteriophage T7/genetics , Crystallography, X-Ray , DNA-Directed DNA Polymerase/metabolism , DNA-Directed RNA Polymerases/metabolism , Escherichia coli/metabolism , Models, Molecular , Promoter Regions, Genetic , Protein Conformation , Transcription, Genetic
13.
RNA Biol ; 16(4): 595-599, 2019 04.
Article in English | MEDLINE | ID: mdl-30146918

ABSTRACT

We recently developed a platform where phage-transducing particles optimize DNA delivery to a wide range of hosts. Here, we use this platform to optimize DNA transduction into hosts that naturally restrict specific DNA sequences. We first show that a specific plasmid is restricted for transduction into a particular Salmonella strain. Using the platform, we select for a mutated plasmid that overcomes the restriction barrier. Insertion of the non-mutated sequence into a permissive plasmid restricts transduction. We further show that epigenetic modification enables the DNA to evade restriction by the putative defense system. Our results validate this straightforward genetic approach for optimization of DNA transduction into new hosts.


Subject(s)
DNA, Bacterial/genetics , Immune Evasion/genetics , Mutation/genetics , Transduction, Genetic , Base Sequence , Epigenesis, Genetic , Plasmids/genetics , Reproducibility of Results
14.
Nucleic Acids Res ; 45(13): 7697-7707, 2017 Jul 27.
Article in English | MEDLINE | ID: mdl-28486695

ABSTRACT

Infection of Escherichia coli by the T7 phage leads to rapid and selective inhibition of the bacterial RNA polymerase (RNAP) by the 7 kDa T7 protein Gp2. We describe the identification and functional and structural characterisation of a novel 7 kDa T7 protein, Gp5.7, which adopts a winged helix-turn-helix-like structure and specifically represses transcription initiation from host RNAP-dependent promoters on the phage genome via a mechanism that involves interaction with DNA and the bacterial RNAP. Whereas Gp2 is indispensable for T7 growth in E. coli, we show that Gp5.7 is required for optimal infection outcome. Our findings provide novel insights into how phages fine-tune the activity of the host transcription machinery to ensure both successful and efficient phage progeny development.


Subject(s)
Bacteriophage T7/metabolism , Bacteriophage T7/pathogenicity , DNA-Binding Proteins/metabolism , DNA-Directed RNA Polymerases/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/enzymology , Escherichia coli/virology , Viral Proteins/metabolism , Bacteriophage T7/genetics , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , Models, Molecular , Mutagenesis , Protein Folding , Static Electricity , Viral Proteins/chemistry , Viral Proteins/genetics
15.
J Cell Biochem ; 119(2): 1291-1298, 2018 02.
Article in English | MEDLINE | ID: mdl-28731201

ABSTRACT

Generating plants with increased yields while maintaining low production and maintenance costs is highly important since plants are the major food source for humans and animals, as well as important producers of chemicals, pharmaceuticals, and fuels. Gene editing approaches, particularly the CRISPR-Cas system, are the preferred methods for improving crops, enabling quick, robust, and accurate gene manipulation. Nevertheless, new breeds of genetically modified crops have initiated substantial debates concerning their biosafety, commercial use, and regulation. Here, we discuss the challenges facing genetic engineering of crops by CRISPR-cas, and highlight the pros and cons of using this tool.


Subject(s)
CRISPR-Cas Systems , Crops, Agricultural , Food, Genetically Modified , Gene Editing/methods , Legislation, Food , Plants, Genetically Modified , Animals , Crops, Agricultural/genetics , Crops, Agricultural/growth & development , Humans , Plants, Genetically Modified/genetics , Plants, Genetically Modified/growth & development
16.
Drug Resist Updat ; 30: 1-6, 2017 01.
Article in English | MEDLINE | ID: mdl-28363331

ABSTRACT

The extensive use of antibiotics over the last century has resulted in a significant artificial selection pressure for antibiotic-resistant pathogens to evolve. Various strategies to fight these pathogens have been introduced including new antibiotics, naturally-derived enzymes/peptides that specifically target pathogens and bacteriophages that lyse these pathogens. A new tool has recently been introduced in the fight against drug-resistant pathogens-the prokaryotic defense mechanism-clustered regularly interspaced short palindromic repeats-CRISPR associated (CRISPR-Cas) system. The CRISPR-Cas system acts as a nuclease that can be guided to cleave any target DNA, allowing sophisticated, yet feasible, manipulations of pathogens. Here, we review pioneering studies that use the CRISPR-Cas system to specifically edit bacterial populations, eliminate their resistance genes and combine these two strategies in order to produce an artificial selection pressure for antibiotic-sensitive pathogens. We suggest that intelligent design of this system, along with efficient delivery tools into pathogens, may significantly reduce the threat of antibiotic-resistant pathogens.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteria/genetics , CRISPR-Cas Systems/genetics , Gene Editing/instrumentation , Gene Editing/methods
17.
Proc Natl Acad Sci U S A ; 112(23): 7267-72, 2015 Jun 09.
Article in English | MEDLINE | ID: mdl-26060300

ABSTRACT

The increasing threat of pathogen resistance to antibiotics requires the development of novel antimicrobial strategies. Here we present a proof of concept for a genetic strategy that aims to sensitize bacteria to antibiotics and selectively kill antibiotic-resistant bacteria. We use temperate phages to deliver a functional clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated (Cas) system into the genome of antibiotic-resistant bacteria. The delivered CRISPR-Cas system destroys both antibiotic resistance-conferring plasmids and genetically modified lytic phages. This linkage between antibiotic sensitization and protection from lytic phages is a key feature of the strategy. It allows programming of lytic phages to kill only antibiotic-resistant bacteria while protecting antibiotic-sensitized bacteria. Phages designed according to this strategy may be used on hospital surfaces and hand sanitizers to facilitate replacement of antibiotic-resistant pathogens with sensitive ones.


Subject(s)
Bacteria/virology , Bacteriophages/physiology , Drug Resistance, Bacterial , Bacteria/genetics , Clustered Regularly Interspaced Short Palindromic Repeats , Lysogeny , Plasmids
19.
Proc Natl Acad Sci U S A ; 111(52): 18715-20, 2014 Dec 30.
Article in English | MEDLINE | ID: mdl-25512533

ABSTRACT

Today's arsenal of antibiotics is ineffective against some emerging strains of antibiotic-resistant pathogens. Novel inhibitors of bacterial growth therefore need to be found. The target of such bacterial-growth inhibitors must be identified, and one way to achieve this is by locating mutations that suppress their inhibitory effect. Here, we identified five growth inhibitors encoded by T7 bacteriophage. High-throughput sequencing of genomic DNA of resistant bacterial mutants evolving against three of these inhibitors revealed unique mutations in three specific genes. We found that a nonessential host gene, ppiB, is required for growth inhibition by one bacteriophage inhibitor and another nonessential gene, pcnB, is required for growth inhibition by a different inhibitor. Notably, we found a previously unidentified growth inhibitor, gene product (Gp) 0.6, that interacts with the essential cytoskeleton protein MreB and inhibits its function. We further identified mutations in two distinct regions in the mreB gene that overcome this inhibition. Bacterial two-hybrid assay and accumulation of Gp0.6 only in MreB-expressing bacteria confirmed interaction of MreB and Gp0.6. Expression of Gp0.6 resulted in lemon-shaped bacteria followed by cell lysis, as previously reported for MreB inhibitors. The described approach may be extended for the identification of new growth inhibitors and their targets across bacterial species and in higher organisms.


Subject(s)
Bacteriophage T7/metabolism , DNA, Viral/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Genome, Viral/physiology , Viral Proteins/metabolism , Bacteriophage T7/genetics , DNA, Viral/genetics , Escherichia coli/genetics , Escherichia coli/ultrastructure , Escherichia coli/virology , Escherichia coli Proteins/genetics , Polynucleotide Adenylyltransferase/genetics , Polynucleotide Adenylyltransferase/metabolism , Viral Proteins/genetics
20.
Curr Genet ; 62(4): 771-773, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27126384

ABSTRACT

Stress-induced mutagenesis has been studied in cancer cells, yeast, bacteria, and archaea, but not in viruses. In a recent publication, we present a bacteriophage model showing an apparent stress-induced mutagenesis. We show that the stress does not drive the mutagenesis, but only selects the fittest mutants. The mechanism underlying the observed phenomenon is a phenotypic heterogeneity that resembles persistence of the viral population. The new findings, the background for the ongoing debate on stress-induced mutagenesis, and the phenotypic heterogeneity underlying a novel phage infection strategy are discussed in this short manuscript.


Subject(s)
Bacteriophages/physiology , Gene-Environment Interaction , Mutagenesis , Phenotype , Stress, Physiological , Bacteria/virology , Selection, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL