Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Country/Region as subject
Language
Publication year range
1.
Water Sci Technol ; 89(1): 54-70, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38214986

ABSTRACT

The volume capture ratio of annual rainfall (VCRAR) of low-impact development measures is significantly influenced by its operating characteristics, particularly for residential stormwater detention tanks (SWDTs). The multi-objective operation strategy of SWDTs, encompassing toilet flushing (TF), green space irrigation (GSI), combined TF and GSI (TF-GSI), and peak flow reduction (PFR) rate, were compared using a case study in Beijing based on the stormwater management model. The findings indicate that the VCRAR for TF, GSI, and TF-GSI rainwater harvesting targets was 89.05, 77.16, and 91.21%, respectively. The operating scheme and return periods have a significant impact on the PFR rate's effectiveness. When the return period was lower than 10 years, the SWDT does not reach its maximum storage capacity, and the PFR rate was increased with increasing the return period: the PFR rate was 71.47% when the design return period was 10 years. It will also produce the phenomena of water inrush, and the overflow volume will grow rapidly when the SWDT reaches its maximum storage capacity. Hence, the operation of SWDTs may be integrated with real-time control to optimize the VCRAR for rainwater reuse and flood migration, thereby enhancing the volume utilization efficiency of SWDTs.


Subject(s)
Rain , Water Movements , Beijing , Water Supply , Floods
2.
Water Sci Technol ; 87(6): 1423-1437, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37001157

ABSTRACT

Volume capture ratio of annual rainfall (VCRAR) is the key parameter of low-impact development (LID) facilities design, which is significantly affected by the rainfall event division method. However, there is no universal agreement on how to determine an optimal division method to achieve it. A modified minimum inter-event time (MIT) method based on MATLAB software was proposed to find an optimal MIT value. The result showed that the optimal MIT value in Beijing is 200 min based on the daily rainfall data from 1987 to 2016, and the annual average rainfall events were 34.2 with an average rainfall depth of 13.7 mm. Taking bioretention facilities as an example, the errors of design VCRAR under different MIT values were compared based on a Stormwater Management Model (SWMM). The results showed that when design VCRAR was ≤50, 55-60, 60-75, 75-80 and >80%, the optimal MIT value for LID facilities design was 60, 120, 200, 360 and 1,440 min, respectively. Therefore, the optimal MIT should be flexibly selected with the changing of design VCRAR, to ensure that LID facilities meet the design goals.


Subject(s)
Rain , Water Movements , Hydrology , Beijing
SELECTION OF CITATIONS
SEARCH DETAIL