Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Semin Cell Dev Biol ; 88: 107-118, 2019 04.
Article in English | MEDLINE | ID: mdl-29432955

ABSTRACT

Plant defensins are an extensive family of small cysteine rich proteins characterised by a conserved cysteine stabilised alpha beta protein fold which resembles the structure of insect and vertebrate defensins. However, secondary structure and disulphide topology indicates two independent superfamilies of defensins with similar structures that have arisen via an extreme case of convergent evolution. Defensins from plants and insects belong to the cis-defensin superfamily whereas mammalian defensins belong to the trans-defensin superfamily. Plant defensins are produced by all species of plants and although the structure is highly conserved, the amino acid sequences are highly variable with the exception of the cysteine residues that form the stabilising disulphide bonds and a few other conserved residues. The majority of plant defensins are components of the plant innate immune system but others have evolved additional functions ranging from roles in sexual reproduction and development to metal tolerance. This review focuses on the antifungal mechanisms of plant defensins. The activity of plant defensins is not limited to plant pathogens and many of the described mechanisms have been elucidated using yeast models. These mechanisms are more complex than simple membrane permeabilisation induced by many small antimicrobial peptides. Common themes that run through the characterised mechanisms are interactions with specific lipids, production of reactive oxygen species and induction of cell wall stress. Links between sequence motifs and functions are highlighted where appropriate. The complexity of the interactions between plant defensins and fungi helps explain why this protein superfamily is ubiquitous in plant innate immunity.


Subject(s)
Defensins/immunology , Fungi/drug effects , Plant Diseases/immunology , Plant Immunity/genetics , Plant Proteins/immunology , Plants/immunology , Cell Wall/chemistry , Cell Wall/drug effects , Conserved Sequence , Defensins/genetics , Defensins/pharmacology , Disease Resistance/genetics , Evolution, Molecular , Fungi/chemistry , Fungi/metabolism , Gene Expression Regulation, Plant/immunology , Host-Pathogen Interactions , Lipids/chemistry , Lipids/immunology , Plant Diseases/genetics , Plant Diseases/microbiology , Plant Proteins/genetics , Plant Proteins/pharmacology , Plants/genetics , Plants/microbiology , Protein Folding , Protein Structure, Secondary , Reactive Oxygen Species/immunology , Reactive Oxygen Species/metabolism
2.
J Biol Chem ; 288(19): 13885-96, 2013 May 10.
Article in English | MEDLINE | ID: mdl-23548907

ABSTRACT

BACKGROUND: Sunflower trypsin inhibitor-1 (SFTI-1) and Momordica cochinchinensis trypsin inhibitor-II (MCoTI-II) are potent protease inhibitors comprising a cyclic backbone. RESULTS: Elucidation of structure-activity relationships for SFTI-1 and MCoTI-II was used to design inhibitors with enhanced inhibitory activity. CONCLUSION: An analog of MCoTI-II is one of the most potent inhibitors of matriptase. SIGNIFICANCE: These results provide a solid basis for the design of selective peptide inhibitors of matriptase with therapeutic potential. The type II transmembrane serine protease matriptase is a key activator of multiple signaling pathways associated with cell proliferation and modification of the extracellular matrix. Deregulated matriptase activity correlates with a number of diseases, including cancer and hence highly selective matriptase inhibitors may have therapeutic potential. The plant-derived cyclic peptide, sunflower trypsin inhibitor-1 (SFTI-1), is a promising drug scaffold with potent matriptase inhibitory activity. In the current study we have analyzed the structure-activity relationships of SFTI-1 and Momordica cochinchinensis trypsin inhibitor-II (MCoTI-II), a structurally divergent trypsin inhibitor from Momordica cochinchinensis that also contains a cyclic backbone. We show that MCoTI-II is a significantly more potent matriptase inhibitor than SFTI-1 and that all alanine mutants of both peptides, generated using positional scanning mutagenesis, have decreased trypsin affinity, whereas several mutations either maintain or result in enhanced matriptase inhibitory activity. These intriguing results were used to design one of the most potent matriptase inhibitors known to date with a 290 pm equilibrium dissociation constant, and provide the first indication on how to modulate affinity for matriptase over trypsin in cyclic peptides. This information might be useful for the design of more selective and therapeutically relevant inhibitors of matriptase.


Subject(s)
Peptides, Cyclic/chemistry , Plant Proteins/chemistry , Serine Endopeptidases/chemistry , Serine Proteinase Inhibitors/chemistry , Amino Acid Sequence , Amino Acid Substitution , Catalytic Domain , Helianthus/chemistry , Humans , Hydrogen Bonding , Kinetics , Molecular Dynamics Simulation , Molecular Sequence Data , Momordica/chemistry , Nuclear Magnetic Resonance, Biomolecular , Peptides, Cyclic/chemical synthesis , Peptides, Cyclic/genetics , Plant Proteins/chemical synthesis , Plant Proteins/genetics , Protein Binding , Structure-Activity Relationship , Surface Properties
3.
J Fungi (Basel) ; 9(11)2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37998916

ABSTRACT

Onychomycosis, or fungal nail infection, causes not only pain and discomfort but can also have psychological and social consequences for the patient. Treatment of onychomycosis is complicated by the location of the infection under the nail plate, meaning that antifungal molecules must either penetrate the nail or be applied systemically. Currently, available treatments are limited by their poor nail penetration for topical products or their potential toxicity for systemic products. Plant defensins with potent antifungal activity have the potential to be safe and effective treatments for fungal infections in humans. The cystine-stabilized structure of plant defensins makes them stable to the extremes of pH and temperature as well as digestion by proteases. Here, we describe a novel plant defensin, Ppdef1, as a peptide for the treatment of fungal nail infections. Ppdef1 has potent, fungicidal activity against a range of human fungal pathogens, including Candida spp., Cryptococcus spp., dermatophytes, and non-dermatophytic moulds. In particular, Ppdef1 has excellent activity against dermatophytes that infect skin and nails, including the major etiological agent of onychomycosis Trichophyton rubrum. Ppdef1 also penetrates human nails rapidly and efficiently, making it an excellent candidate for a novel topical treatment of onychomycosis.

4.
Methods Mol Biol ; 2012: 211-235, 2019.
Article in English | MEDLINE | ID: mdl-31161511

ABSTRACT

Cyclization of the peptide backbone by connecting the N- and C-terminus can endow target peptides with favorable properties, such as increased stability or potential oral bioavailability. However, there are few tools available for carrying out this modification. Asparaginyl endopeptidases (AEPs) are a class of enzymes that typically work as proteases, but a subset is highly efficient at cyclization of the peptide backbone. In this chapter we describe how to utilize a cyclizing AEP (OaAEP1b) to produce backbone-cyclized peptides both in planta and in vitro. Using the in planta method, OaAEP1b and the target precursor peptide are coexpressed in the leaves of the model plant Nicotiana benthamiana, and cyclization of the target peptide occurs in planta. Using the in vitro method, purified recombinant OaAEP1b produced in bacteria is used to cyclize the target precursor peptide in vitro.


Subject(s)
Cysteine Endopeptidases/chemistry , Oldenlandia/enzymology , Peptides, Cyclic/chemistry , Amino Acid Sequence , Catalysis , Cyclization , Cyclotides/chemistry , Cysteine Endopeptidases/genetics , Cysteine Endopeptidases/metabolism , Ligases , Oldenlandia/genetics , Protein Engineering , Recombinant Proteins , Structure-Activity Relationship
5.
Cell Surf ; 5: 100026, 2019 Dec.
Article in English | MEDLINE | ID: mdl-32743142

ABSTRACT

The fungal cell wall is the first point of contact between fungal pathogens and host organisms. It serves as a protective barrier against biotic and abiotic stresses and as a signal to the host that a fungal pathogen is present. The fungal cell wall is made predominantly of carbohydrates and glycoproteins, many of which serve as binding receptors for host defence molecules or activate host immune responses through interactions with membrane-bound receptors. Plant defensins are a large family of cationic antifungal peptides that protect plants against fungal disease. Binding of the plant defensin NaD1 to the fungal cell wall has been described but the specific component of the cell wall with which this interaction occurred was unknown. The effect of binding was also unclear, that is whether the plant defensin used fungal cell wall components as a recognition motif for the plant to identify potential pathogens or if the cell wall acted to protect the fungus against the defensin. Here we describe the interaction between the fungal cell wall polysaccharides chitin and ß-glucan with NaD1 and other plant defensins. We discovered that the ß-glucan layer protects the fungus against plant defensins and the loss of activity experienced by many cationic antifungal peptides at elevated salt concentrations is due to sequestration by fungal cell wall polysaccharides. This has limited the development of cationic antifungal peptides for the treatment of systemic fungal diseases in humans as the level of salt in serum is enough to inactivate most cationic peptides.

6.
Sci Rep ; 9(1): 10820, 2019 07 25.
Article in English | MEDLINE | ID: mdl-31346249

ABSTRACT

Asparaginyl endopeptidases (AEPs) are a class of enzymes commonly associated with proteolysis in the maturation of seed storage proteins. However, a subset of AEPs work preferentially as peptide ligases, coupling release of a leaving group to formation of a new peptide bond. These "ligase-type" AEPs require only short recognition motifs to ligate a range of targets, making them useful tools in peptide and protein engineering for cyclisation of peptides or ligation of separate peptides into larger products. Here we report the recombinant expression, ligase activity and cyclisation kinetics of three new AEPs from the cyclotide producing plant Oldenlandia affinis with superior kinetics to the prototypical recombinant AEP ligase OaAEP1b. These AEPs work preferentially as ligases at both acidic and neutral pH and we term them "canonical AEP ligases" to distinguish them from other AEPs where activity preferences shift according to pH. We show that these ligases intrinsically favour ligation over hydrolysis, are highly efficient at cyclising two unrelated peptides and are compatible with organic co-solvents. Finally, we demonstrate the broad scope of recombinant AEPs in biotechnology by the backbone cyclisation of an intrinsically disordered protein, the 25 kDa malarial vaccine candidate Plasmodium falciparum merozoite surface protein 2 (MSP2).


Subject(s)
Cysteine Endopeptidases/metabolism , Intrinsically Disordered Proteins/metabolism , Ligases/metabolism , Plant Proteins/metabolism , Antigens, Protozoan/metabolism , Cyclization , Models, Molecular , Protein Engineering , Protozoan Proteins/metabolism , Recombinant Proteins/metabolism
7.
Front Microbiol ; 10: 795, 2019.
Article in English | MEDLINE | ID: mdl-31031739

ABSTRACT

Pathogenic microbes are developing resistance to established antibiotics, making the development of novel antimicrobial molecules paramount. One major resource for discovery of antimicrobials is the arsenal of innate immunity molecules that are part of the first line of pathogen defense in many organisms. Gene encoded cationic antimicrobial peptides are a major constituent of innate immune arsenals. Many of these peptides exhibit potent antimicrobial activity in vitro. However, a major hurdle that has impeded their development for use in the clinic is the loss of activity at physiological salt concentrations, attributed to weakening of the electrostatic interactions between the cationic peptide and anionic surfaces of the microbial cells in the presence of salt. Using plant defensins we have investigated the relationship between the charge of an antimicrobial peptide and its activity in media with elevated salt concentrations. Plant defensins are a large class of antifungal peptides that have remarkable stability at extremes of pH and temperature as well as resistance to protease digestion. A search of a database of over 1200 plant defensins identified ZmD32, a defensin from Zea mays, with a predicted charge of +10.1 at pH 7, the highest of any defensin in the database. Recombinant ZmD32 retained activity against a range of fungal species in media containing elevated concentrations of salt. In addition, ZmD32 was active against Candida albicans biofilms as well as both Gram negative and Gram-positive bacteria. This broad spectrum antimicrobial activity, combined with a low toxicity on human cells make ZmD32 an attractive lead for development of future antimicrobial molecules.

8.
mSphere ; 2(5)2017.
Article in English | MEDLINE | ID: mdl-29062897

ABSTRACT

Defensins are a large family of small, cationic, cysteine-rich proteins that are part of the defense arsenal that plants use for protection against potentially damaging fungal infections. The plant defensin NaD1 from Nicotiana alata is a potent antifungal protein that inhibits growth and kills a variety of fungal pathogens that affect both plant and animal (human) hosts. Some serine protease inhibitors have also been reported to be antifungal molecules, while others have no inhibitory activity against fungi. Here we describe the synergistic activity of the plant defensin NaD1 with a selection of serine protease inhibitors against the plant pathogens Fusarium graminearum and Colletotrichum graminicola and the animal pathogen Candida albicans. The synergistic activity was not related to the protease inhibitory activity of these molecules but may arise from activation of fungal stress response pathways. The bovine pancreatic trypsin inhibitor (BPTI) displayed the most synergy with NaD1. BPTI also acted synergistically with several other antifungal molecules. The observation that NaD1 acts synergistically with protease inhibitors provides the foundation for the design of transgenic plants with improved resistance to fungal disease. It also supports the possibility of naturally occurring accessory factors that function to enhance the activity of innate immunity peptides in biological systems. IMPORTANCE This work describes the increased activity of a natural antifungal peptide in the presence of another antifungal peptide from a different family. This is termed antifungal synergy. Synergy is important for decreasing the amount of antifungal molecule needed to control the disease. Traditionally, naturally occurring antifungal molecules are assayed in isolation. Identification of synergistic interactions between antifungal peptides means that their activities in a complex biological system are likely to be different from what we observe when examining them individually. This study identified synergy between an antifungal peptide and a group of peptides that do not affect fungal growth in vitro. This provides the foundation for generation of transgenic plants with increased resistance to fungal disease and identification of antifungal accessory factors that enhance the activity of innate immune molecules but do not have an antifungal effect on their own.

SELECTION OF CITATIONS
SEARCH DETAIL