Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Immunity ; 56(5): 959-978.e10, 2023 05 09.
Article in English | MEDLINE | ID: mdl-37040762

ABSTRACT

Although the importance of genome organization for transcriptional regulation of cell-fate decisions and function is clear, the changes in chromatin architecture and how these impact effector and memory CD8+ T cell differentiation remain unknown. Using Hi-C, we studied how genome configuration is integrated with CD8+ T cell differentiation during infection and investigated the role of CTCF, a key chromatin remodeler, in modulating CD8+ T cell fates through CTCF knockdown approaches and perturbation of specific CTCF-binding sites. We observed subset-specific changes in chromatin organization and CTCF binding and revealed that weak-affinity CTCF binding promotes terminal differentiation of CD8+ T cells through the regulation of transcriptional programs. Further, patients with de novo CTCF mutations had reduced expression of the terminal-effector genes in peripheral blood lymphocytes. Therefore, in addition to establishing genome architecture, CTCF regulates effector CD8+ T cell heterogeneity through altering interactions that regulate the transcription factor landscape and transcriptome.


Subject(s)
Chromatin , Repressor Proteins , Humans , Binding Sites , CCCTC-Binding Factor/metabolism , CD8-Positive T-Lymphocytes/metabolism , DNA/metabolism , Protein Binding , Repressor Proteins/genetics , Repressor Proteins/metabolism
2.
Physiol Genomics ; 49(7): 339-345, 2017 Jul 01.
Article in English | MEDLINE | ID: mdl-28500253

ABSTRACT

The long noncoding RNAs (lncRNAs), which constitute a large portion of the transcriptome, have gained intense research interest because of their roles in regulating physiological and pathophysiological functions in the cell. We identified from RNA-Seq profiling a set of lncRNAs in cultured human umbilical vein endothelial cells (HUVECs) that are differentially regulated by atheroprotective vs. atheroprone shear flows. Among the comprehensively annotated lncRNAs, including both known and novel transcripts, LINC00341 is one of the most abundant lncRNAs in endothelial cells. Moreover, its expression level is enhanced by atheroprotective pulsatile shear flow and atorvastatin. Overexpression of LINC00341 suppresses the expression of vascular cell adhesion molecule 1 (VCAM1) and the adhesion of monocytes induced by atheroprone flow and tumor necrosis factor-alpha. Underlying this anti-inflammatory role, LINC00341 guides enhancer of zest homolog 2, a core histone methyltransferase of polycomb repressive complex 2, to the promoter region of the VCAM1 gene to suppress VCAM1. Network analysis reveals that the key signaling pathways (e.g., Rho and PI3K/AKT) are co-regulated with LINC00341 in endothelial cells in response to pulsatile shear. Together, these findings suggest that LINC00341, as an example of lncRNAs, plays important roles in modulating endothelial function in health and disease.


Subject(s)
Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/pathology , Inflammation/genetics , RNA, Long Noncoding/metabolism , Vascular Cell Adhesion Molecule-1/metabolism , Atorvastatin/pharmacology , Cell Adhesion , Gene Expression Regulation , Gene Regulatory Networks , Humans , Inflammation/pathology , Monocytes/pathology , Polycomb Repressive Complex 2/metabolism , RNA, Long Noncoding/genetics , Tumor Necrosis Factor-alpha/metabolism
3.
Cell Rep ; 43(6): 114258, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38781073

ABSTRACT

Transforming growth factor ß (TGF-ß) represents a well-established signal required for tissue-resident memory T cell (TRM) formation at intestinal surfaces, regulating the expression of a large collection of genes coordinately promoting intestinal TRM differentiation. The functional contribution from each TGF-ß-controlled transcription factor is not entirely known. Here, we find that TGF-ß-induced T-bet downregulation and Hic1 induction represent two critical events during intestinal TRM differentiation. Importantly, T-bet deficiency significantly rescues intestinal TRM formation in the absence of the TGF-ß receptor. Hic1 induction further strengthens TRM maturation in the absence of TGF-ß and T-bet. Our results reveal that provision of certain TGF-ß-induced molecular events can partially replace TGF-ß signaling to promote the establishment of intestinal TRMs, which allows the functional dissection of TGF-ß-induced transcriptional targets and molecular mechanisms for TRM differentiation.


Subject(s)
CD8-Positive T-Lymphocytes , Intestinal Mucosa , Kruppel-Like Transcription Factors , Signal Transduction , T-Box Domain Proteins , Animals , Mice , Antigens, CD/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cell Differentiation , Immunologic Memory , Integrin alpha Chains/metabolism , Intestinal Mucosa/cytology , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Intestines/immunology , Kruppel-Like Transcription Factors/metabolism , Memory T Cells/metabolism , Memory T Cells/immunology , Mice, Inbred C57BL , T-Box Domain Proteins/metabolism , T-Box Domain Proteins/genetics , Transforming Growth Factor beta/metabolism
4.
bioRxiv ; 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38585842

ABSTRACT

Tissue-resident memory CD8 T cells (TRM) kill infected cells and recruit additional immune cells to limit pathogen invasion at barrier sites. Small intestinal (SI) TRM cells consist of distinct subpopulations with higher expression of effector molecules or greater memory potential. We hypothesized that occupancy of diverse anatomical niches imprints these distinct TRM transcriptional programs. We leveraged human samples and a murine model of acute systemic viral infection to profile the location and transcriptome of pathogen-specific TRM cell differentiation at single-transcript resolution. We developed computational approaches to capture cellular locations along three anatomical axes of the small intestine and to visualize the spatiotemporal distribution of cell types and gene expression. TRM populations were spatially segregated: with more effector- and memory-like TRM preferentially localized at the villus tip or crypt, respectively. Modeling ligand-receptor activity revealed patterns of key cellular interactions and cytokine signaling pathways that initiate and maintain TRM differentiation and functional diversity, including different TGFß sources. Alterations in the cellular networks induced by loss of TGFßRII expression revealed a model consistent with TGFß promoting progressive TRM maturation towards the villus tip. Ultimately, we have developed a framework for the study of immune cell interactions with the spectrum of tissue cell types, revealing that T cell location and functional state are fundamentally intertwined.

5.
Sci Immunol ; 8(83): eabq7486, 2023 05 12.
Article in English | MEDLINE | ID: mdl-37172104

ABSTRACT

After resolution of infection, T cells differentiate into long-lived memory cells that recirculate through secondary lymphoid organs or establish residence in tissues. In contrast to CD8+ tissue-resident memory T cells (TRM), the developmental origins and transcriptional regulation of CD4+ TRM remain largely undefined. Here, we investigated the phenotypic, functional, and transcriptional profiles of CD4+ TRM in the small intestine (SI) responding to acute viral infection, revealing a shared gene expression program and chromatin accessibility profile with circulating TH1 and the progressive acquisition of a mature TRM program. Single-cell RNA sequencing identified heterogeneity among established CD4+ TRM, which were predominantly located in the lamina propria, and revealed a population of cells that coexpressed both effector- and memory-associated genes, including the transcriptional regulators Blimp1, Id2, and Bcl6. TH1-associated Blimp1 and Id2 and TFH-associated Bcl6 were required for early TRM formation and development of a mature TRM population in the SI. These results demonstrate a developmental relationship between TH1 effector cells and the establishment of early TRM, as well as highlighted differences in CD4+ versus CD8+ TRM populations, providing insights into the mechanisms underlying the origins, differentiation, and persistence of CD4+ TRM in response to viral infection.


Subject(s)
Immunologic Memory , Virus Diseases , Humans , CD4-Positive T-Lymphocytes , Cell Differentiation , Gene Expression
6.
bioRxiv ; 2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36909629

ABSTRACT

The differentiation of naïve CD8+ cytotoxic T lymphocytes (CTLs) into effector and memory states results in large scale changes in transcriptional and phenotypic profiles. Little is known about how large-scale changes in genome organisation reflect or underpin these transcriptional programs. We utilised Hi-C to map changes in the spatial organisation of long-range genome contacts within naïve, effector and memory virus-specific CD8+ T cells. We observed that the architecture of the naive CD8+ T cell genome was distinct from effector and memory genome configurations with extensive changes within discrete functional chromatin domains. However, deletion of the BACH2 or SATB1 transcription factors was sufficient to remodel the naïve chromatin architecture and engage transcriptional programs characteristic of differentiated cells. This suggests that the chromatin architecture within naïve CD8+ T cells is preconfigured to undergo autonomous remodelling upon activation, with key transcription factors restraining differentiation by actively enforcing the unique naïve chromatin state.

7.
Cell Rep ; 42(10): 113301, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37858463

ABSTRACT

The differentiation of naive CD8+ T lymphocytes into cytotoxic effector and memory CTL results in large-scale changes in transcriptional and phenotypic profiles. Little is known about how large-scale changes in genome organization underpin these transcriptional programs. We use Hi-C to map changes in the spatial organization of long-range genome contacts within naive, effector, and memory virus-specific CD8+ T cells. We observe that the architecture of the naive CD8+ T cell genome is distinct from effector and memory genome configurations, with extensive changes within discrete functional chromatin domains associated with effector/memory differentiation. Deletion of BACH2, or to a lesser extent, reducing SATB1 DNA binding, within naive CD8+ T cells results in a chromatin architecture more reminiscent of effector/memory states. This suggests that key transcription factors within naive CD8+ T cells act to restrain T cell differentiation by actively enforcing a unique naive chromatin state.


Subject(s)
CD8-Positive T-Lymphocytes , Chromatin , Cell Differentiation , Transcription Factors/genetics , Immunologic Memory/genetics
8.
J Clin Invest ; 131(7)2021 04 01.
Article in English | MEDLINE | ID: mdl-33792560

ABSTRACT

Adoptive T cell therapies (ACTs) hold great promise in cancer treatment, but low overall response rates in patients with solid tumors underscore remaining challenges in realizing the potential of this cellular immunotherapy approach. Promoting CD8+ T cell adaptation to tissue residency represents an underutilized but promising strategy to improve tumor-infiltrating lymphocyte (TIL) function. Here, we report that deletion of the HIF negative regulator von Hippel-Lindau (VHL) in CD8+ T cells induced HIF-1α/HIF-2α-dependent differentiation of tissue-resident memory-like (Trm-like) TILs in mouse models of malignancy. VHL-deficient TILs accumulated in tumors and exhibited a core Trm signature despite an exhaustion-associated phenotype, which led to retained polyfunctionality and response to αPD-1 immunotherapy, resulting in tumor eradication and protective tissue-resident memory. VHL deficiency similarly facilitated enhanced accumulation of chimeric antigen receptor (CAR) T cells with a Trm-like phenotype in tumors. Thus, HIF activity in CD8+ TILs promotes accumulation and antitumor activity, providing a new strategy to enhance the efficacy of ACTs.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/immunology , CD8-Positive T-Lymphocytes/immunology , Hypoxia-Inducible Factor 1, alpha Subunit/immunology , Immunity, Cellular , Immunologic Memory , Lymphocytes, Tumor-Infiltrating/immunology , Neoplasms, Experimental/immunology , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , CD8-Positive T-Lymphocytes/pathology , Cell Line, Tumor , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Lymphocytes, Tumor-Infiltrating/pathology , Mice , Mice, Knockout , Neoplasms, Experimental/genetics , Neoplasms, Experimental/pathology , Von Hippel-Lindau Tumor Suppressor Protein/genetics , Von Hippel-Lindau Tumor Suppressor Protein/immunology
9.
J Exp Med ; 218(8)2021 08 02.
Article in English | MEDLINE | ID: mdl-34037670

ABSTRACT

In response to infection, pathogen-specific CD8 T cells differentiate into functionally diverse effector and memory T cell populations critical for resolving disease and providing durable immunity. Through small-molecule inhibition, RNAi studies, and induced genetic deletion, we reveal an essential role for the chromatin modifier and BET family member BRD4 in supporting the differentiation and maintenance of terminally fated effector CD8 T cells during infection. BRD4 bound diverse regulatory regions critical to effector T cell differentiation and controlled transcriptional activity of terminal effector-specific super-enhancers in vivo. Consequentially, induced deletion of Brd4 or small molecule-mediated BET inhibition impaired maintenance of a terminal effector T cell phenotype. BRD4 was also required for terminal differentiation of CD8 T cells in the tumor microenvironment in murine models, which we show has implications for immunotherapies. Taken together, these data reveal an unappreciated requirement for BRD4 in coordinating activity of cis regulatory elements to control CD8 T cell fate and lineage stability.


Subject(s)
CD8-Positive T-Lymphocytes/cytology , Cell Differentiation/immunology , Nuclear Proteins/metabolism , Transcription Factors/metabolism , Virus Diseases/immunology , Animals , CD8-Positive T-Lymphocytes/immunology , Chromatin/metabolism , Enhancer Elements, Genetic/genetics , Mice, Knockout , Neoplasms/immunology , Neoplasms/pathology , Nuclear Proteins/deficiency , Protein Binding , RNA Interference , Transcription Factors/deficiency , Transcription, Genetic
10.
Sci Adv ; 5(12): eaaw1715, 2019 12.
Article in English | MEDLINE | ID: mdl-31844658

ABSTRACT

Follicular helper T (TFH) cells are essential for generating protective humoral immunity. To date, microRNAs (miRNAs) have emerged as important players in regulating TFH cell biology. Here, we show that loss of miR-23~27~24 clusters in T cells resulted in elevated TFH cell frequencies upon different immune challenges, whereas overexpression of this miRNA family led to reduced TFH cell responses. Mechanistically, miR-23~27~24 clusters coordinately control TFH cells through targeting a network of genes that are crucial for TFH cell biology. Among them, thymocyte selection-associated HMG-box protein (TOX) was identified as a central transcription regulator in TFH cell development. TOX is highly up-regulated in both mouse and human TFH cells in a BCL6-dependent manner. In turn, TOX promotes the expression of multiple molecules that play critical roles in TFH cell differentiation and function. Collectively, our results establish a key miRNA regulon that maintains optimal TFH cell responses for resultant humoral immunity.


Subject(s)
Cell Differentiation/genetics , Immunity, Humoral/genetics , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes/immunology , Animals , Gene Expression Regulation, Developmental/immunology , High Mobility Group Proteins/genetics , Humans , Immunity, Humoral/immunology , Lymphocyte Activation/immunology , Mice , MicroRNAs/genetics , Proto-Oncogene Proteins c-bcl-6/genetics , Signal Transduction , T-Lymphocytes, Helper-Inducer/metabolism
11.
J Immunol Res ; 2018: 1697276, 2018.
Article in English | MEDLINE | ID: mdl-30402504

ABSTRACT

Enhanced type 2 helper T (Th2) cell responses to inhaled harmless allergens are strongly associated with the development of allergic diseases. Antigen formulated with an appropriate adjuvant can elicit suitable systemic immunity to protect individuals from disease. Although much has been learned about Th1-favored immunomodulation of OK-432, a streptococcal preparation with antineoplastic activity, little is known about its adjuvant effect for allergic diseases. Herein, we demonstrate that OK-432 acts as an adjuvant to favor a systemic Th1 polarization with an elevation in interferon- (IFN-) γ and ovalbumin- (OVA-) immunoglobulin (Ig) G2a. Prior vaccination with OK-432 formulated against OVA attenuated lung eosinophilic inflammation and Th2 cytokine responses that were caused by challenging with OVA through the airway. This vaccination with OK-432 augmented the ratios of IFN-γ/interleukin- (IL-) 4 cytokine and IgG2a/IgG1 antibody compared to the formulation with Th2 adjuvant aluminum hydroxide (Alum) or antigen only. The results obtained in this study lead us to propose a potential novel adjuvant for clinical use such as prophylactic vaccination for pathogens and immunotherapy in atopic diseases.


Subject(s)
Adjuvants, Immunologic/therapeutic use , Asthma/drug therapy , Immunotherapy/methods , Picibanil/therapeutic use , Th1 Cells/immunology , Th2 Cells/immunology , Alum Compounds/therapeutic use , Animals , Asthma/immunology , Cell Differentiation , Disease Models, Animal , Humans , Immunoglobulin G/blood , Immunomodulation , Interferon-gamma/metabolism , Male , Mice , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL