Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Breast Cancer Res ; 22(1): 60, 2020 06 05.
Article in English | MEDLINE | ID: mdl-32503622

ABSTRACT

BACKGROUND: Mitochondrial dynamics underlies malignant transformation, cancer progression, and response to treatment. Current research presents conflicting evidence for functions of mitochondrial fission and fusion in tumor progression. Here, we investigated how mitochondrial fission and fusion states regulate underlying processes of cancer progression and metastasis in triple-negative breast cancer (TNBC). METHODS: We enforced mitochondrial fission and fusion states through chemical or genetic approaches and measured migration and invasion of TNBC cells in 2D and 3D in vitro models. We also utilized kinase translocation reporters (KTRs) to identify single cell effects of mitochondrial state on signaling cascades, PI3K/Akt/mTOR and Ras/Raf/MEK/ERK, commonly activated in TNBC. Furthermore, we determined effects of fission and fusion states on metastasis, bone destruction, and signaling in mouse models of breast cancer. RESULTS: Enforcing mitochondrial fission through chemical or genetic approaches inhibited migration, invasion, and metastasis in TNBC. Breast cancer cells with predominantly fissioned mitochondria exhibited reduced activation of Akt and ERK both in vitro and in mouse models of breast cancer. Treatment with leflunomide, a potent activator of mitochondrial fusion proteins, overcame inhibitory effects of fission on migration, signaling, and metastasis. Mining existing datasets for breast cancer revealed that increased expression of genes associated with mitochondrial fission correlated with improved survival in human breast cancer. CONCLUSIONS: In TNBC, mitochondrial fission inhibits cellular processes and signaling pathways associated with cancer progression and metastasis. These data suggest that therapies driving mitochondrial fission may benefit patients with breast cancer.


Subject(s)
Cell Transformation, Neoplastic/drug effects , Mitochondria/drug effects , Mitochondrial Dynamics/physiology , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Animals , Bone Neoplasms/drug therapy , Bone Neoplasms/metabolism , Bone Neoplasms/secondary , Carboxy-Lyases/genetics , Carboxy-Lyases/metabolism , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Female , Humans , Immunosuppressive Agents/pharmacology , Leflunomide/pharmacology , Mice , Mice, Inbred NOD , Mice, SCID , Mitochondria/metabolism , Mitochondria/pathology , Neoplasm Invasiveness , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Prognosis , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Triple Negative Breast Neoplasms/drug therapy , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
2.
Physiol Rep ; 12(13): e16134, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38981846

ABSTRACT

Endothelial dysfunction is a critical feature of acute respiratory distress syndrome (ARDS) associated with higher disease severity and worse outcomes. Preclinical in vivo models of sepsis and ARDS have failed to yield useful therapies in humans, perhaps due to interspecies differences in inflammatory responses and heterogeneity of human host responses. Use of microphysiological systems (MPS) to investigate lung endothelial function may shed light on underlying mechanisms and targeted treatments for ARDS. We assessed the response to plasma from critically ill sepsis patients in our lung endothelial MPS through measurement of endothelial permeability, expression of adhesion molecules, and inflammatory cytokine secretion. Sepsis plasma induced areas of endothelial cell (EC) contraction, loss of cellular coverage, and luminal defects. EC barrier function was significantly worse following incubation with sepsis plasma compared to healthy plasma. EC ICAM-1 expression, IL-6 and soluble ICAM-1 secretion increased significantly more after incubation with sepsis plasma compared with healthy plasma. Plasma from sepsis patients who developed ARDS further increased IL-6 and sICAM-1 compared to plasma from sepsis patients without ARDS and healthy plasma. Our results demonstrate the proof of concept that lung endothelial MPS can enable interrogation of specific mechanisms of endothelial dysfunction that promote ARDS in sepsis patients.


Subject(s)
Endothelial Cells , Lung , Respiratory Distress Syndrome , Sepsis , Humans , Sepsis/physiopathology , Sepsis/complications , Sepsis/metabolism , Respiratory Distress Syndrome/physiopathology , Respiratory Distress Syndrome/metabolism , Lung/physiopathology , Lung/metabolism , Male , Endothelial Cells/metabolism , Female , Middle Aged , Intercellular Adhesion Molecule-1/blood , Intercellular Adhesion Molecule-1/metabolism , Aged , Interleukin-6/blood , Interleukin-6/metabolism , Adult , Microphysiological Systems
3.
medRxiv ; 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38370788

ABSTRACT

OBJECTIVE: Timely intervention for clinically deteriorating ward patients requires that care teams accurately diagnose and treat their underlying medical conditions. However, the most common diagnoses leading to deterioration and the relevant therapies provided are poorly characterized. Therefore, we aimed to determine the diagnoses responsible for clinical deterioration, the relevant diagnostic tests ordered, and the treatments administered among high-risk ward patients using manual chart review. DESIGN: Multicenter retrospective observational study. SETTING: Inpatient medical-surgical wards at four health systems from 2006-2020 PATIENTS: Randomly selected patients (1,000 from each health system) with clinical deterioration, defined by reaching the 95th percentile of a validated early warning score, electronic Cardiac Arrest Risk Triage (eCART), were included. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Clinical deterioration was confirmed by a trained reviewer or marked as a false alarm if no deterioration occurred for each patient. For true deterioration events, the condition causing deterioration, relevant diagnostic tests ordered, and treatments provided were collected. Of the 4,000 included patients, 2,484 (62%) had clinical deterioration confirmed by chart review. Sepsis was the most common cause of deterioration (41%; n=1,021), followed by arrhythmia (19%; n=473), while liver failure had the highest in-hospital mortality (41%). The most common diagnostic tests ordered were complete blood counts (47% of events), followed by chest x-rays (42%), and cultures (40%), while the most common medication orders were antimicrobials (46%), followed by fluid boluses (34%), and antiarrhythmics (19%). CONCLUSIONS: We found that sepsis was the most common cause of deterioration, while liver failure had the highest mortality. Complete blood counts and chest x-rays were the most common diagnostic tests ordered, and antimicrobials and fluid boluses were the most common medication interventions. These results provide important insights for clinical decision-making at the bedside, training of rapid response teams, and the development of institutional treatment pathways for clinical deterioration. KEY POINTS: Question: What are the most common diagnoses, diagnostic test orders, and treatments for ward patients experiencing clinical deterioration? Findings: In manual chart review of 2,484 encounters with deterioration across four health systems, we found that sepsis was the most common cause of clinical deterioration, followed by arrythmias, while liver failure had the highest mortality. Complete blood counts and chest x-rays were the most common diagnostic test orders, while antimicrobials and fluid boluses were the most common treatments. Meaning: Our results provide new insights into clinical deterioration events, which can inform institutional treatment pathways, rapid response team training, and patient care.

4.
bioRxiv ; 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37873450

ABSTRACT

Acute respiratory distress syndrome due to non-pulmonary causes exhibits prominent endothelial activation which is challenging to assess in critically ill patients. Preclinical in vivo models of sepsis and ARDS have failed to yield useful therapies in humans, perhaps due to interspecies differences in inflammatory responses. Use of microphysiological systems (MPS) offer improved fidelity to human biological responses and better predict pharmacological responses than traditional culture. We adapted a lung endothelial MPS based on the LumeNEXT platform to evaluate the effect of plasma from critically ill sepsis patients on endothelial permeability, adhesion molecule expression and inflammatory cytokine production. Lumens incubated with sepsis plasma exhibited areas of contraction, loss of cellular coverage, and luminal defects. Sepsis plasma-incubated lumens had significantly increased permeability compared to lumens incubated with healthy donor plasma. ICAM-1 expression increased significantly in lumens incubated with sepsis plasma compared with those incubated with healthy control plasma, while concentrations of IL-6, IL-18, and soluble VEGF-R1 increased in sepsis plasma before and after incubation in the MPS compared with healthy control plasma. Use of the lung endothelial MPS may enable interrogation of specific mechanisms of endothelial dysfunction that promote ARDS in sepsis patients.

5.
Mol Cancer Res ; 17(5): 1142-1154, 2019 05.
Article in English | MEDLINE | ID: mdl-30718260

ABSTRACT

Migration and invasion of cancer cells constitute fundamental processes in tumor progression and metastasis. Migratory cancer cells commonly upregulate expression of plasminogen activator inhibitor 1 (PAI1), and PAI1 correlates with poor prognosis in breast cancer. However, mechanisms by which PAI1 promotes migration of cancer cells remain incompletely defined. Here we show that increased PAI1 drives rearrangement of the actin cytoskeleton, mitochondrial fragmentation, and glycolytic metabolism in triple-negative breast cancer (TNBC) cells. In two-dimensional environments, both stable expression of PAI1 and treatment with recombinant PAI1 increased migration, which could be blocked with the specific inhibitor tiplaxtinin. PAI1 also promoted invasion into the extracellular matrix from coculture spheroids with human mammary fibroblasts in fibrin gels. Elevated cellular PAI1 enhanced cytoskeletal features associated with migration, actin-rich migratory structures, and reduced actin stress fibers. In orthotopic tumor xenografts, we discovered that TNBC cells with elevated PAI1 show collagen fibers aligned perpendicular to the tumor margin, an established marker of invasive breast tumors. Further studies revealed that PAI1 activates ERK signaling, a central regulator of motility, and promotes mitochondrial fragmentation. Consistent with known effects of mitochondrial fragmentation on metabolism, fluorescence lifetime imaging microscopy of endogenous NADH showed that PAI1 promotes glycolysis in cell-based assays, orthotopic tumor xenografts, and lung metastases. Together, these data demonstrate for the first time that PAI1 regulates cancer cell metabolism and suggest targeting metabolism to block motility and tumor progression. IMPLICATIONS: We identified a novel mechanism through which cancer cells alter their metabolism to promote tumor progression.


Subject(s)
Actin Cytoskeleton/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/secondary , Plasminogen Activator Inhibitor 1/genetics , Plasminogen Activator Inhibitor 1/metabolism , Triple Negative Breast Neoplasms/pathology , Animals , Cell Line, Tumor , Cell Movement , Female , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic , Glycolysis , High-Throughput Nucleotide Sequencing , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , MAP Kinase Signaling System , Mice , Neoplasm Transplantation , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Up-Regulation , Whole Genome Sequencing
6.
Tomography ; 4(2): 84-93, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29984313

ABSTRACT

Bone constitutes the most common site of breast cancer metastases either at time of presentation or recurrent disease years after seemingly successful therapy. Bone metastases cause substantial morbidity, including life-threatening spinal cord compression and hypercalcemia. Given the high prevalence of patients with breast cancer, health-care costs of bone metastases (>$20,000 per episode) impose a tremendous economic burden on society. To investigate mechanisms of bone metastasis, we developed femoral artery injection of cancer cells as a physiologically relevant model of bone metastasis. Comparing young (~6 weeks), skeletally immature mice to old (~6 months) female mice with closed physes (growth plates), we showed significantly greater progression of osteolytic metastases in young animals. Bone destruction increased in the old mice following ovariectomy, emphasizing the pathologic consequences of greater bone turnover and net loss. Despite uniform initial distribution of breast cancer cells throughout the hind limb after femoral artery injection, we observed preferential formation of osteolytic bone metastases in the proximal tibia. Tropism for the proximal tibia arises in part because of TGF-ß, a cytokine abundant in both physes of skeletally immature mice and matrix of bone in mice of all ages. We also showed that age-dependent effects on osteolytic bone metastases did not occur in male mice with disseminated breast cancer cells in bone. These studies establish a model system to specifically focus on pathophysiology and treatment of bone metastases and underscore the need to match biologic variables in the model to relevant subsets of patients with breast cancer.

7.
Sci Rep ; 8(1): 244, 2018 01 10.
Article in English | MEDLINE | ID: mdl-29321615

ABSTRACT

Isolation of tumor-initiating cells currently relies on markers that do not reflect essential biologic functions of these cells. We proposed to overcome this limitation by isolating tumor-initiating cells based on enhanced migration, a function tightly linked to tumor-initiating potential through epithelial-to-mesenchymal transition (EMT). We developed a high-throughput microfluidic migration platform with automated cell tracking software and facile recovery of cells for downstream functional and genetic analyses. Using this device, we isolated a small subpopulation of migratory cells with significantly greater tumor formation and metastasis in mouse models. Whole transcriptome sequencing of migratory versus non-migratory cells from two metastatic breast cancer cell lines revealed a unique set of genes as key regulators of tumor-initiating cells. We focused on phosphatidylserine decarboxylase (PISD), a gene downregulated by 8-fold in migratory cells. Breast cancer cells overexpressing PISD exhibited reduced tumor-initiating potential in a high-throughput microfluidic mammosphere device and mouse xenograft model. PISD regulated multiple aspects of mitochondria, highlighting mitochondrial functions as therapeutic targets against cancer stem cells. This research establishes not only a novel microfluidic technology for functional isolation of tumor-initiating cells regardless of cancer type, but also a new approach to identify essential regulators of these cells as targets for drug development.


Subject(s)
Carboxy-Lyases/metabolism , Cell Separation , Microfluidic Analytical Techniques , Neoplastic Stem Cells/metabolism , Animals , Carboxy-Lyases/genetics , Cell Line, Tumor , Cell Movement/genetics , Cell Separation/methods , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , High-Throughput Nucleotide Sequencing , Humans , Lab-On-A-Chip Devices , Mice , Mitochondria/metabolism , Phenotype , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL