Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Zootaxa ; (3805): 1-129, 2014 May 29.
Article in English | MEDLINE | ID: mdl-24871152

ABSTRACT

The Caribbean barrier reef near Carrie Bow Cay, Belize, has been a focus of Smithsonian Institution (Washington) reef and mangrove investigations since the early 1970s. Systematics and biology of sponges (Porifera) were addressed by several researchers but none of the studies dealt with cryptic habitats, such as the shaded undersides of coral rubble, reef crevices, and caves, although a high species diversity was recognized and samples were taken for future reference and study. This paper is the result of processing samples taken between 1972 and 2012. In all, 122 species were identified, 14 of them new (including one new genus). The new species are Tetralophophora (new genus) mesoamericana, Geodia cribrata, Placospongia caribica, Prosuberites carriebowensis, Timea diplasterina, Timea oxyasterina, Rhaphidhistia belizensis, Wigginsia curlewensis, Phorbas aurantiacus, Myrmekioderma laminatum, Niphates arenata, Siphonodictyon occultum, Xestospongia purpurea, and Aplysina sciophila. We determined that about 75 of the 122 cryptic sponge species studied (61%) are exclusive members of the sciophilic community, 47 (39 %) occur in both, light-exposed and shaded or dark habitats. Since we estimate the previously known sponge population of Carrie Bow reefs and mangroves at about 200 species, the cryptic fauna makes up 38 % of total diversity.


Subject(s)
Biodiversity , Coral Reefs , Porifera/anatomy & histology , Animals , Belize , Caribbean Region , Checklist
2.
Zookeys ; 1161: 1-68, 2023.
Article in English | MEDLINE | ID: mdl-37234741

ABSTRACT

Sponges are recognized as a diverse and abundant component of mesophotic and deep-sea ecosystems worldwide. In Flower Garden Banks National Marine Sanctuary region within the northwestern Gulf of Mexico, sponges thrive among diverse biological and geological habitats between 16-200+ m deep (i.e., coral reefs and communities, algal nodules, and coralline algae reefs, mesophotic reefs, patch reefs, scarps, ridges, soft substrate, and rocky outcrops). A synoptic guide is presented, developed by studying common sponge species in the region, through direct sampling and in-situ photographic records. A total of 64 species is included: 60 are Demospongiae (14 orders), two are Hexactinellida (one order), and two are Homoscleromorpha (one order). Thirty-four taxa are identified to species and 13 were identified to have affinity with, but were not identical to, a known species. Fifteen taxa could only be identified to genus level, and the species remain as uncertain (incerta sedis), with the potential to represent new species or variants of known species. One specimen received only a family assignation. This study extends geographic or mesophotic occurrence data for eleven known species and includes several potentially new species. This work improves our knowledge of Gulf of Mexico sponge biodiversity and highlights the importance of the region for scientists and resource managers.

3.
Adv Mar Biol ; 61: 211-71, 2012.
Article in English | MEDLINE | ID: mdl-22560779

ABSTRACT

Over the past four decades, sponge research has advanced by leaps and bounds through endeavours such as the Caribbean Coral Reef Ecosystems (CCRE) programme at the U.S. National Museum of Natural History in Washington, D.C. Since its founding in the early 1970s, the programme has been dedicated to a detailed multidisciplinary study of a section of the Mesoamerican Barrier Reef, the Atlantic's largest reef complex, and has generated data far beyond the capability of lone investigators and brief expeditions. This reef complex extends 250 km southward from Yucatan, Mexico, into the Gulf of Honduras, most of it lying 20-40 km off the coast of Belize. A relatively unspoiled ecosystem, it features a great variety of habitats in close proximity, ranging from mangrove islands, seagrass meadows, and patch reefs in its lagoon to the barrier reef along the margin of the continental shelf. Among its varied macrobenthos, sponges stand out for their ubiquity, range of colours, rich species and biomass, and ecological importance; they populate rocky substrates, some sandy bottoms, and the subtidal stilt roots and peat banks of mangroves. Working from a field station established in 1972 on Carrie Bow Cay, a sand islet atop the reef off southern Belize, experts in numerous disciplines from both the Museum and academic institutions throughout the world have explored the area's biodiversity in the broadest sense and community development over time. At last count, 113 researchers (88 working on site) have focused on the biological and geological role of Porifera in Carrie Bow's reef communities, with the results reported in 125 scientific papers to date. The majority of these sponge studies have centred on systematics and faunistics, including quantitative distribution among the various habitats. Taxonomic approaches have ranged from basic morphology to fine structure, DNA barcoding, and ecological manipulations and culminated in a mini-workshop involving several experts on Caribbean Porifera. Ecological work has covered a broad spectrum as well: bioerosion, silica and nutrient cycling, symbiosis, mutualism, space competition, predation, disease, and the effects on sponge individuals and populations of environmental factors such as light, temperature, salinity, desiccation, substrate, and sedimentation. Many projects were enhanced by scientific illustration, laboratory studies of larvae settlement preferences and development, and investigations of microbial and invertebrate sponge associates, notably symbiotic cyanobacteria, parazoanthid epizoans, and crustacean and ophiuroid endobionts. Of the striking discoveries, the work on alpheid shrimps colonizing sponges off Carrie Bow Cay has yielded the first report of eusociality in marine organisms.


Subject(s)
Coral Reefs , Porifera/physiology , Animals , Atlantic Ocean , Belize , Demography , Porifera/classification
4.
Biol Bull ; 209(2): 94-106, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16260769

ABSTRACT

The detection of an endosymbiotic yeast in demosponges of the genus Chondrilla described here records the first such association within the phylum Porifera. The symbiont, interpreted as a yolk body in previous ultrastructural studies, is a chitinous-walled fission yeast. Chitin was detected by an immunocytochemical technique that labels its beta-1,4-N-acetyl-D-glucosamine residues. Abundant symbiotic yeast cells (4.4 +/- 2.3 cells per 10 microm2) transmitted from the soma through the oocytes to the fertilized eggs are directly propagated by vertical transmission in the female. Vertically transmitted yeast were detected in three Chondrilla species with disjunct biogeographical distributions: the Mediterranean, the Caribbean, and the Australian Pacific. Apparently these yeasts are not present in other demosponge genera. Therefore, the fungal endosymbiosis most likely evolved before or during the diversification of the genus Chondrilla.


Subject(s)
Porifera/microbiology , Schizosaccharomyces/ultrastructure , Symbiosis , Animals , Atlantic Ocean , Bahamas , Chitin/chemistry , Immunohistochemistry , Microscopy, Electron, Transmission
5.
Oecologia ; 19(3): 203-216, 1975 Sep.
Article in English | MEDLINE | ID: mdl-28309235

ABSTRACT

Among the large number of limestone-eroding organisms, sponges, mainly of the family Clinonidae are of special interest because of their efficient means of substratum penetration by cellular etching and because they release characteristically shaped calcium carbonate chips which can be detected in the mud-size fraction of many sediments. Identifiable trace fossils and sediments are of great ecological and paleoecological significance.As new data on the excavating mechanism have become available, the questions of burrowing rates and sediment production have gained importance. Extrapolation from shortterm experiments (under 6 months) on substrate invasion are inconclusive because of high initial penetration rates resulting from mechanical stimulation and lack of competition. New experiments show that the rate curve flattens after 6 months and that optimum longterm erosion of CaCO3 does not exceed 700 mg m-2 year-1 (Cliona lampa and C. aprica). Substrate limitations and competition will further reduce this rate.By monitoring the production of CaCO3 chips by Cliona lampa, it was possible to link activity patterns to certain environmental factors. Mechanical stimuli, high light intensity, strong currents and, possibly, low temperature seem to accelerate the burrowing process. Sponge-generated chips can make up over 40% of coral mud when deposited in the current shadow of the reef framework.Using transect counts and sponge area-biomass conversion factors, the mean abundance of burrowing sponges on the Bermuda platform could be calculated. On suitable hard bottom substrates it averages 16 g dry weight per m2. From this value the burrowing potential of sponges can be estimated as 256 g CaCO3 per m2 substrate per year. Since 97-98% of the eroded limestone remains in particulate form, the contribution of fine sediments can amount to 250 g m-2 year-1.Attention is called to the fact that erosion rates by burrowers can not directly be compared with those of borers or scrapers. The former are intermittent and their activities are affected by environmental and biological interactions, while activities of the latter are rather constant and guided by the need for food.

6.
Oecologia ; 5(2): 85-95, 1970 Jun.
Article in English | MEDLINE | ID: mdl-28310351

ABSTRACT

Sponges settling on solid substrates which are separated by sediment bottoms compete for the limited space. Some species have solved this problem by occurring as epizoans, thus avoiding the risk of being expelled from the habitat. The supporting species on the other hand, are specialized in that they possess skeletogenous ectosomal structures and aquiferous processes to maintain their integrity and to escape starvation or suffocation. Although specimens are sometimes intimately interwoven no chimaerid mixing of tissues was observed.

7.
PLoS One ; 8(1): e50437, 2013.
Article in English | MEDLINE | ID: mdl-23372644

ABSTRACT

BACKGROUND: Demosponges are challenging for phylogenetic systematics because of their plastic and relatively simple morphologies and many deep divergences between major clades. To improve understanding of the phylogenetic relationships within Demospongiae, we sequenced and analyzed seven nuclear housekeeping genes involved in a variety of cellular functions from a diverse group of sponges. METHODOLOGY/PRINCIPAL FINDINGS: We generated data from each of the four sponge classes (i.e., Calcarea, Demospongiae, Hexactinellida, and Homoscleromorpha), but focused on family-level relationships within demosponges. With data for 21 newly sampled families, our Maximum Likelihood and Bayesian-based approaches recovered previously phylogenetically defined taxa: Keratosa(p), Myxospongiae(p), Spongillida(p), Haploscleromorpha(p) (the marine haplosclerids) and Democlavia(p). We found conflicting results concerning the relationships of Keratosa(p) and Myxospongiae(p) to the remaining demosponges, but our results strongly supported a clade of Haploscleromorpha(p)+Spongillida(p)+Democlavia(p). In contrast to hypotheses based on mitochondrial genome and ribosomal data, nuclear housekeeping gene data suggested that freshwater sponges (Spongillida(p)) are sister to Haploscleromorpha(p) rather than part of Democlavia(p). Within Keratosa(p), we found equivocal results as to the monophyly of Dictyoceratida. Within Myxospongiae(p), Chondrosida and Verongida were monophyletic. A well-supported clade within Democlavia(p), Tetractinellida(p), composed of all sampled members of Astrophorina and Spirophorina (including the only lithistid in our analysis), was consistently revealed as the sister group to all other members of Democlavia(p). Within Tetractinellida(p), we did not recover monophyletic Astrophorina or Spirophorina. Our results also reaffirmed the monophyly of order Poecilosclerida (excluding Desmacellidae and Raspailiidae), and polyphyly of Hadromerida and Halichondrida. CONCLUSIONS/SIGNIFICANCE: These results, using an independent nuclear gene set, confirmed many hypotheses based on ribosomal and/or mitochondrial genes, and they also identified clades with low statistical support or clades that conflicted with traditional morphological classification. Our results will serve as a basis for future exploration of these outstanding questions using more taxon- and gene-rich datasets.


Subject(s)
Cell Nucleus/genetics , Genes, Essential , Phylogeny , Porifera/classification , Porifera/genetics , Animals , Cell Nucleus/chemistry , DNA, Ribosomal/classification , DNA, Ribosomal/genetics , Evolution, Molecular , Genes, Mitochondrial , Models, Genetic , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL