Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Cell Biochem Funct ; 42(3): e4019, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38622949

ABSTRACT

Colorectal cancer (CRC) is the world's second most common gastrointestinal malignancy. Preventing tumor cell proliferation and dissemination is critical for patient survival. Polyphenols have a variety of health advantages and can help prevent cancer. The current study examined different cellular activities of the gut-microbiota metabolite urolithin A (UA) on several colon cancer cell lines. The results revealed that UA suppressed cell growth in a dose- and time-dependent manner. In the current investigation, UA substantially affected cell migration in the wound-healing experiment and greatly decreased the number of colonies generated in each CRC cell culture. UA decreased cellular migration in CRC cells 48 h after treatment, which was significant (p < .001) compared to the migration rate in untreated cells. When compared to untreated cells, UA slowed the process of colony formation by reducing the number of colonies or altering their morphological shape. The western blot analysis investigation revealed that UA inhibits cellular metastasis by lowering the expression levels of matrix metalloproteinases 1 and 2 (MMP1 and MMP2) by more than 43% and 41% (p < .001) in HT29, 28% and 149% (p < .001) in SW480, and 90% and 74% (p < .001) in SW620, respectively, at a 100 µM dosage of UA compared to the control. Surprisingly, at a 100 µM dosage of UA, the expression levels of the tissue inhibitor of metalloproteinases 1 (TIMP1) were elevated in HT29, SW480, and SW620 cells treated with 100 µM of UA by more than 89%, 57%, and 29%, respectively. Our findings imply that UA has anticancer properties and might be used therapeutically to treat CRC. The findings provided the first indication of the influence of UA on cellular migration and metastasis in colon cancer cells. All of these data showed that UA might be used as an adjuvant therapy in the treatment of various forms of CRC.


Subject(s)
Colonic Neoplasms , Colorectal Neoplasms , Coumarins , Humans , Colorectal Neoplasms/metabolism , Cell Movement , Cell Proliferation , Cell Line, Tumor , Matrix Metalloproteinase 2
2.
Cell Stress Chaperones ; 26(3): 473-493, 2021 05.
Article in English | MEDLINE | ID: mdl-33666815

ABSTRACT

Colorectal cancer (CRC) is the second most common gastrointestinal cancer globally. Prevention of tumor cell proliferation and metastasis is vital for prolonging patient survival. Polyphenols provide a wide range of health benefits and prevention from cancer. In the gut, urolithins are the major metabolites of polyphenols. The objective of our study was to elucidate the molecular mechanism of the anticancer effect of urolithin A (UA) on colorectal cancer cells. UA was found to inhibit the cell proliferation of CRC cell lines in a dose-dependent and time-dependent manner in HT29, SW480, and SW620 cells. Exposure to UA resulted in cell cycle arrest in a dose-dependent manner along with alteration in the expression of cell cycle-related protein. Treatment of CRC cell lines with UA resulted in the induction of apoptosis. Treatment of HT29, SW480, and SW620 with UA resulted in increased expression of the pro-apoptotic proteins, p53 and p21. Similarly, UA treatment inhibited the anti-apoptotic protein expression of Bcl-2. Moreover, exposure of UA induced cytochrome c release and caspase activation. Furthermore, UA was found to generate reactive oxygen species (ROS) production in CRC cells. These findings indicate that UA possesses anticancer potential and may be used therapeutically for the treatment of CRC.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Cycle Checkpoints/drug effects , Reactive Oxygen Species/metabolism , Tumor Suppressor Protein p53/metabolism , Apoptosis/drug effects , Apoptosis/physiology , Caspase 3/drug effects , Caspase 3/metabolism , Cell Death/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , Humans , Proto-Oncogene Proteins c-bcl-2/drug effects , Proto-Oncogene Proteins c-bcl-2/metabolism , Tumor Suppressor Protein p53/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL