ABSTRACT
The urgent need for mitigating climate change necessitates a transformative shift in energy production and consumption paradigms. Amidst this challenge, bioenergy emerges as a pivotal contributor to the global energy transition, offering a diverse array of solid, liquid, and gaseous fuels derived from biomass. This mini review delves into the unique potential of bioenergy innovations, particularly renewable diesel, bio jet fuel, and ethanol, to reduce greenhouse gas emissions and transform various industries. The article highlights critical technological advancements, supportive policies, and cross-sector collaboration essential for a sustainable energy transition. Specific challenges such as ensuring a consistent biomass feedstock supply, decentralizing processing units, and navigating complex regulatory frameworks are examined. Innovative solutions like decentralized biomass processing and enhanced biomass logistics are discussed as pathways to overcome these barriers. The review provides specific recommendations for near-term policies and strategies to support decentralized facilities, showcasing bioenergy's role in achieving a sustainable future.
ABSTRACT
Since climate change keeps escalating, it is imperative that the increasing CO2 emissions be combated. Over recent years, research efforts have been aiming for the design and optimization of materials for CO2 capture and conversion to enable a circular economy. The uncertainties in the energy sector and the variations in supply and demand place an additional burden on the commercialization and implementation of these carbon capture and utilization technologies. Therefore, the scientific community needs to think out of the box if it is to find solutions to mitigate the effects of climate change. Flexible chemical synthesis can pave the way for tackling market uncertainties. The materials for flexible chemical synthesis function under a dynamic operation, and thus, they need to be studied as such. Dual-function materials are an emerging group of dynamic catalytic materials that integrate the CO2 capture and conversion steps. Hence, they can be used to allow some flexibility in the production of chemicals as a response to the changing energy sector. This Perspective highlights the necessity of flexible chemical synthesis by focusing on understanding the catalytic characteristics under a dynamic operation and by discussing the requirements for the optimization of materials at the nanoscale.
ABSTRACT
Fe-derived catalysts were synthesized by the pyrolysis of MIL-100 (Fe) metal-organic framework (MOF) and evaluated in the reverse water-gas shift (RWGS) reaction. The addition of Rh as a dopant by in-situ incorporation during the synthesis and wet impregnation was also considered. Our characterization data showed that the main active phase was a mixture of α-Fe, Fe3C, and Fe3O4 in all the catalysts evaluated. Additionally, small Rh loading leads to a decrease in the particle size in the active phase. Despite all three catalysts showing commendable CO selectivity levels, the C@Fe* catalyst showed the most promising performance at a temperature below 500 °C, attributed to the in-situ incorporation of Rh during the synthesis. Overall, this work showcases a strategy for designing novel Fe MOF-derived catalysts for RWGS reaction, opening new research opportunities for CO2 utilization schemes.
ABSTRACT
Bioderived materials have emerged as sustainable catalyst supports for several heterogeneous reactions owing to their naturally occurring hierarchal pore size distribution, high surface area, and thermal and chemical stability. We utilize sporopollenin exine capsules (SpECs), a carbon-rich byproduct of pollen grains, composed primarily of polymerized and cross-linked lipids, to synthesize carbon-encapsulated iron nanoparticles via evaporative precipitation and pyrolytic treatments. The composition and morphology of the macroparticles were influenced by the precursor iron acetate concentration. Most significantly, the formation of crystalline phases (Fe3C, α-Fe, and graphite) detected via X-ray diffraction spectroscopy showed a critical dependence on iron loading. Significantly, the characteristic morphology and structure of the SpECs were largely preserved after high-temperature pyrolysis. Analysis of Brunauer-Emmett-Teller surface area, the D and G bands from Raman spectroscopy, and the relative ratio of the C=C to C-C bonding from high-resolution X-ray photoelectron spectroscopy suggests that porosity, surface area, and degree of graphitization were easily tuned by varying the Fe loading. A mechanism for the formation of crystalline phases and meso-porosity during the pyrolysis process is also proposed. SpEC-Fe10% proved to be highly active and selective for the reverse water-gas shift reaction at high temperatures (>600 °C).
ABSTRACT
The feasibility of a Dual Function Material (DFM) with a versatile catalyst offering switchable chemical synthesis from carbon dioxide (CO2) was demonstrated for the first time, showing evidence of the ability of these DFMs to passively capture CO2 directly from the air as well. These DFMs open up possibilities in flexible chemical production from dilute sources of CO2, through a combination of CO2 adsorption and subsequent chemical transformation (methanation, reverse water gas shift or dry reforming of methane). Combinations of Ni Ru bimetallic catalyst with Na2O, K2O or CaO adsorbent were supported on CeO2-Al2O3 to develop flexible DFMs. The designed multicomponent materials were shown to reversibly adsorb CO2 between the 350 and 650 °C temperature range and were easily regenerated by an inert gas purge stream. The components of the flexible DFMs showed a high degree of interaction with each other, which evidently enhanced their CO2 capture performance ranging from 0.14 to 0.49 mol kg-1. It was shown that captured CO2 could be converted into useful products through either CO2 methanation, reverse water-gas shift (RWGS) or dry reforming of methane (DRM), which provides flexibility in terms of co-reactant (hydrogen vs. methane) and end product (synthetic natural gas, syngas or CO) by adjusting reaction conditions. The best DFM was the one containing CaO, producing 104 µmol of CH4 per kgDFM in CO2 methanation, 58 µmol of CO per kgDFM in RWGS and 338 µmol of CO per kgDFM in DRM.
ABSTRACT
Biomass gasification streams typically contain a mixture of CO, H2, CH4, and CO2 as the majority components and frequently require conditioning for downstream processes. Herein, we investigate the catalytic upgrading of surrogate biomass gasifiers through the generation of syngas. Seeking a bifunctional system capable of converting CO2 and CH4 to CO, a reverse water gas shift (RWGS) catalyst based on Fe/MgAl2O4 was decorated with an increasing content of Ni metal and evaluated for producing syngas using different feedstock compositions. This approach proved efficient for gas upgrading, and the incorporation of adequate Ni content increased the CO content by promoting the RWGS and dry reforming of methane (DRM) reactions. The larger CO productivity attained at high temperatures was intimately associated with the generation of FeNi3 alloys. Among the catalysts' series, Ni-rich catalysts favored the CO productivity in the presence of CH4, but important carbon deposition processes were noticed. On the contrary, 2Ni-Fe/MgAl2O4 resulted in a competitive and cost-effective system delivering large amounts of CO with almost no coke deposits. Overall, the incorporation of a suitable realistic application for valorization of variable composition of biomass-gasification derived mixtures obtaining a syngas-rich stream thus opens new routes for biosyngas production and upgrading.
ABSTRACT
Reverse water gas shift (RWGS) competes with methanation as a direct pathway in the CO2 recycling route, with methanation being a dominant process in the low-temperature window and RWGS at higher temperatures. This work showcases the design of multi-component catalysts for a full-temperature-range RWGS behavior by suppressing the methanation reaction at low temperatures. The addition of alkali promoters (Na, K, and Cs) to the reference Ni/CeO2 catalyst allows identifying a clear trend in RWGS activation promotion in both low- and high-temperature ranges. Our characterization data evidence changes in the electronic, structural, and textural properties of the reference catalyst when promoted with selected dopants. Such modifications are crucial to displaying an advanced RWGS performance. Among the studied promoters, Cs leads to a more substantial impact on the catalytic activity. Beyond the improved CO selectivity, our best performing catalyst maintains high conversion levels for long-term runs in cyclable temperature ranges, showcasing the versatility of this catalyst for different operating conditions. All in all, this work provides an illustrative example of the impact of promoters on fine-tuning the selectivity of a CO2 conversion process, opening new opportunities for CO2 utilization strategies enabled by multi-component catalysts.
ABSTRACT
Designing an economically viable catalyst that maintains high catalytic activity and stability is the key to unlock dry reforming of methane (DRM) as a primary strategy for biogas valorization. Ni/Al2O3 catalysts have been widely used for this purpose; however, several modifications have been reported in the last years in order to prevent coke deposition and deactivation of the samples. Modification of the acidity of the support and the addition of noble metal promoters are between the most reported strategies. Nevertheless, in the task of designing an active and stable catalyst for DRM, the selection of an appropriate noble metal promoter is turning more challenging owing to the lack of homogeneity of the different studies. Therefore, this research aims to compare Ru (0.50 and 2.0%) and Re (0.50 and 2.0%) as noble metal promoters for a Ni/MgAl2O4 catalyst under the same synthesis and reaction conditions. Catalysts were characterized by XRF, BET, XRD, TPR, hydrogen chemisorption (H2-TPD), and dry reforming reaction tests. Results show that both promoters increase Ni reducibility and dispersion. However, Ru seems a better promoter for DRM since 0.50% of Ru increases the catalytic activity in 10% and leads to less coke deposition.
ABSTRACT
MAX phases are layered ternary carbides or nitrides that are attractive for catalysis applications due to their unusual set of properties. They show high thermal stability like ceramics, but they are also tough, ductile, and good conductors of heat and electricity like metals. Here, we study the potential of the Ti3AlC2 MAX phase as a support for molybdenum oxide for the reverse water-gas shift (RWGS) reaction, comparing this new catalyst to more traditional materials. The catalyst showed higher turnover frequency values than MoO3/TiO2 and MoO3/Al2O3 catalysts, due to the outstanding electronic properties of the Ti3AlC2 support. We observed a charge transfer effect from the electronically rich Ti3AlC2 MAX phase to the catalyst surface, which in turn enhances the reducibility of MoO3 species during reaction. The redox properties of the MoO3/Ti3AlC2 catalyst improve its RWGS intrinsic activity compared to TiO2- and Al2O3-based catalysts.
ABSTRACT
It still remains challenge for expanding the photo-response range of TiO2 with dominant {0 0 1} facets due to the hardly achieving modification of the electronic structure without destroying the formation of TiO2 high energy facets. Herein, we report the construction of carboxylate species modified TiO2 nanosheets with dominant {0 0 1} facets by employing ethanol as a carbon source through a low-temperature (300 °C) carbonization method. The as-obtained samples were investigated in detail by using various characterization techniques. The results indicate that the carboxylate species derived from the oxidation and carbonization of ethanol are coordinated to the {0 0 1} facets in a bidentate bridging mode. The electron-withdrawing carboxylate species induce TiO2 to form a lower valence band edge and a narrower bandgap, which enhances the oxidation ability of photogenerated holes and expands the photo-response range. The partially carbonized carboxylate species can also act as a photosensitizer to induce visible-light photocatalytic activity of TiO2 nanosheets. In addition, the carboxylate species can further promote the separation of photogenerated charge carriers. The findings of this work may provide a new perspective for tuning the band structure of TiO2 with dominant {0 0 1} facets and improving its photocatalytic performance.
ABSTRACT
In this work the development of gold catalysts, essentially based on γ-alumina with small superficial fraction of Ce-Fe mixed oxides as support for the low temperature CO oxidation is proposed. Characterization results obtained by means of TEM, OSC, XPS, UV-Vis spectroscopy and H2-TPR are employed to correlate the activity data with the catalysts composition. The bare γ-alumina supported gold catalyst demonstrates the poorest activity within the series. The addition of CeO2 or FeOX improves the catalytic performance, especially observed for the CeO2-FeOx mixed oxide doped samples. This enhanced CO oxidation activity was related to the Ce-Fe interaction producing materials with promoted redox properties and therefore oxidation activity.