Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Clin Exp Immunol ; 207(1): 72-83, 2022 01 28.
Article in English | MEDLINE | ID: mdl-35020859

ABSTRACT

Antigen-specific T cells can serve as a response biomarker in non-clinical or clinical immunotherapy studies in autoimmune disease. There are protocols with optimized multimer staining methods to detect peptide (p)MHCII+ CD4+ T cells, and some qualified and validated protocols for pMHCI+ CD8+ T cells. However, no protocol is fully or partially qualified to enumerate and characterize antigen-specific pMHCII+ CD4+ T cells from patient samples. Implementing such an assay requires a desired level of specificity and precision, in terms of assay repeatability and reproducibility. In transgenic type II collagen (CII)-immunized HLA-DR1/DR4 humanized mouse models of collagen-induced arthritis (CIA), CII259-273-specific T cells dominantly expand. Therefore antigen-specific T cells recognizing this epitope presented by rheumatoid arthritis (RA)-associated risk HLA-DR allomorphs are of interest to understand disease progression and responses to immunotherapy in RA patients. Using HLA-DRB1∗04:01 or ∗01:01-collagen type II (CII)259-273 tetramers, we evaluated parameters influencing precision and reproducibility of an optimized flow cytometry-based method for antigen-specific CD4+ T cells and eight specific subpopulations with and without tetramer positivity. We evaluated specificity, precision, and reproducibility for research environments and non-regulated laboratories. The assay has excellent overall precision with %CV<25% for intra-assay repeatability, inter-analyst precision, and inter-assay reproducibility. The precision of the assay correlated negatively with the cell viability after thawing, indicating that post-thaw viability is a critical parameter for reproducibility. This assay is suitable for longitudinal analysis of treatment response and disease activity outcome in RA patients, and adaptable for translational or immunotherapy clinical trial settings.


Subject(s)
Arthritis, Rheumatoid , CD4-Positive T-Lymphocytes , Animals , Flow Cytometry , HLA-DR4 Antigen , Humans , Mice , Mice, Transgenic , Peptides , Reproducibility of Results , Staining and Labeling
2.
JCI Insight ; 7(20)2022 10 24.
Article in English | MEDLINE | ID: mdl-36278483

ABSTRACT

BACKGROUNDAntigen-specific regulation of autoimmune disease is a major goal. In seropositive rheumatoid arthritis (RA), T cell help to autoreactive B cells matures the citrullinated (Cit) antigen-specific immune response, generating RA-specific V domain glycosylated anti-Cit protein antibodies (ACPA VDG) before arthritis onset. Low or escalating antigen administration under "sub-immunogenic" conditions favors tolerance. We explored safety, pharmacokinetics, and immunological and clinical effects of s.c. DEN-181, comprising liposomes encapsulating self-peptide collagen II259-273 (CII) and NF-κB inhibitor 1,25-dihydroxycholecalciferol.METHODSA double-blind, placebo-controlled, exploratory, single-ascending-dose, phase I trial assessed the impact of low, medium, and high DEN-181 doses on peripheral blood CII-specific and bystander Cit64vimentin59-71-specific (Cit-Vim-specific) autoreactive T cell responses, cytokines, and ACPA in 17 HLA-DRB1*04:01+ or *01:01+ ACPA+ RA patients on methotrexate.RESULTSDEN-181 was well tolerated. Relative to placebo and normalized to baseline values, Cit-Vim-specific T cells decreased in patients administered medium and high doses of DEN-181. Relative to placebo, percentage of CII-specific programmed cell death 1+ T cells increased within 28 days of DEN-181. Exploratory analysis in DEN-181-treated patients suggested improved RA disease activity was associated with expansion of CII-specific and Cit-Vim-specific T cells; reduction in ACPA VDG, memory B cells, and inflammatory myeloid populations; and enrichment in CCR7+ and naive T cells. Single-cell sequencing identified T cell transcripts associated with tolerogenic TCR signaling and exhaustion after low or medium doses of DEN-181.CONCLUSIONThe safety and immunomodulatory activity of low/medium DEN-181 doses provide rationale to further assess antigen-specific immunomodulatory therapy in ACPA+ RA.TRIAL REGISTRATIONAnzctr.org.au identifier ACTRN12617001482358, updated September 8, 2022.FUNDINGInnovative Medicines Initiative 2 Joint Undertaking (grant agreement 777357), supported by European Union's Horizon 2020 research and innovation programme and European Federation of Pharmaceutical Industries and Associations; Arthritis Queensland; National Health and Medical Research Council (NHMRC) Senior Research Fellowship; and NHMRC grant 2008287.


Subject(s)
Arthritis, Rheumatoid , Calcitriol , Humans , Liposomes , Methotrexate , NF-kappa B , Receptors, CCR7 , Arthritis, Rheumatoid/drug therapy , Peptides , Immunotherapy , Immunologic Factors , Cytokines , Collagen , Receptors, Antigen, T-Cell
3.
Front Immunol ; 11: 587469, 2020.
Article in English | MEDLINE | ID: mdl-33424839

ABSTRACT

The development of tolerizing therapies aiming to inactivate autoreactive effector T-cells is a promising therapeutic approach to control undesired autoimmune responses in human diseases such as Type 1 Diabetes (T1D). A critical issue is a lack of sensitive and reproducible methods to analyze antigen-specific T-cell responses, despite various attempts. We refined a proliferation assay using the fluorescent dye 5,6-carboxylfluorescein diacetate succinimidyl ester (CFSE) to detect responding T-cells, highlighting the fundamental issues to be taken into consideration to monitor antigen-specific responses in patients with T1D. The critical elements that maximize detection of antigen-specific responses in T1D are reduction of blood storage time, standardization of gating parameters, titration of CFSE concentration, selecting the optimal CFSE staining duration and the duration of T-cell stimulation, and freezing in medium containing human serum. Optimization of these elements enables robust, reproducible application to longitudinal cohort studies or clinical trial samples in which antigen-specific T-cell responses are relevant, and adaptation to other autoimmune diseases.


Subject(s)
Autoantigens/immunology , Diabetes Mellitus, Type 1/immunology , Flow Cytometry/methods , Immunologic Techniques/methods , T-Lymphocytes/immunology , Adolescent , Cell Proliferation , Child , Child, Preschool , Female , Fluoresceins , Fluorescent Dyes , Humans , Lymphocyte Activation/immunology , Male
4.
Front Immunol ; 9: 8, 2018.
Article in English | MEDLINE | ID: mdl-29403492

ABSTRACT

With the advent of novel strategies to induce tolerance in autoimmune and autoimmune-like conditions, clinical trials of antigen-specific tolerizing immunotherapy have become a reality. Besides safety, it will be essential to gather mechanistic data on responding CD4+ T cells to assess the effects of various immunomodulatory approaches in early-phase trials. Peptide-MHC class II (pMHCII) multimers are an ideal tool for monitoring antigen-specific CD4+ T cell responses in unmanipulated cells directly ex vivo. Various protocols have been published but there are reagent and assay limitations across laboratories that could hinder their global application to immune monitoring. In this methodological analysis, we compare protocols and test available reagents to identify sources of variability and to determine the limitations of the tetramer binding assay. We describe a robust pMHCII flow cytometry-based assay to quantify and phenotype antigen-specific CD4+ T cells directly ex vivo from frozen peripheral blood mononuclear cell samples, which we suggest should be tested across various laboratories to standardize immune-monitoring results.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Flow Cytometry/methods , Histocompatibility Antigens Class II/immunology , Monitoring, Immunologic/methods , Peptides/immunology , Antibodies, Monoclonal/immunology , Autoimmune Diseases/immunology , Humans , Immune Tolerance/immunology , Immunosuppression Therapy
5.
Sci Transl Med ; 7(290): 290ra87, 2015 Jun 03.
Article in English | MEDLINE | ID: mdl-26041704

ABSTRACT

In animals, immunomodulatory dendritic cells (DCs) exposed to autoantigen can suppress experimental arthritis in an antigen-specific manner. In rheumatoid arthritis (RA), disease-specific anti-citrullinated peptide autoantibodies (ACPA or anti-CCP) are found in the serum of about 70% of RA patients and are strongly associated with HLA-DRB1 risk alleles. This study aimed to explore the safety and biological and clinical effects of autologous DCs modified with a nuclear factor κB (NF-κB) inhibitor exposed to four citrullinated peptide antigens, designated "Rheumavax," in a single-center, open-labeled, first-in-human phase 1 trial. Rheumavax was administered once intradermally at two progressive dose levels to 18 human leukocyte antigen (HLA) risk genotype-positive RA patients with citrullinated peptide-specific autoimmunity. Sixteen RA patients served as controls. Rheumavax was well tolerated: adverse events were grade 1 (of 4) severity. At 1 month after treatment, we observed a reduction in effector T cells and an increased ratio of regulatory to effector T cells; a reduction in serum interleukin-15 (IL-15), IL-29, CX3CL1, and CXCL11; and reduced T cell IL-6 responses to vimentin(447-455)-Cit450 relative to controls. Rheumavax did not induce disease flares in patients recruited with minimal disease activity, and DAS28 decreased within 1 month in Rheumavax-treated patients with active disease. This exploratory study demonstrates safety and biological activity of a single intradermal injection of autologous modified DCs exposed to citrullinated peptides, and provides rationale for further studies to assess clinical efficacy and antigen-specific effects of autoantigen immunomodulatory therapy in RA.


Subject(s)
Arthritis, Rheumatoid/therapy , Citrulline/chemistry , Dendritic Cells/immunology , HLA Antigens/genetics , Immunotherapy , Peptides/chemistry , Aged , Arthritis, Rheumatoid/immunology , Female , Humans , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL