Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 120(41): e2304534120, 2023 10 10.
Article in English | MEDLINE | ID: mdl-37782793

ABSTRACT

Aberrant transcripts expression of the m6A methyltransferase complex (MTC) is widely found across human cancers, suggesting a dysregulated signaling cascade which integrates m6A epitranscriptome to drive tumorigenesis. However, the responsible transcriptional machinery directing the expression of distinct MTC subunits remains unclear. Here, we identified an unappreciated interplay between the histone acetyl-lysine reader BRD4 and the m6A writer complex across human cancers. BRD4 directly stimulates transcripts expression of seven MTC subunits, allowing the maintenance of the nuclear writer complex integrity. Upon BET inhibition, this BRD4-MTC signaling cascade accounts for global m6A reduction and the subsequent dynamic alteration of BRD4-dependent transcriptome, resulting in impaired DNA damage response that involves activation of homologous recombination (HR) repair and repression of apoptosis. We further demonstrated that the combined synergy upon BET/PARP inhibition largely relies on disrupted m6A modification of HR and apoptotic genes, counteracting PARP inhibitor (PARPi) resistance in patient-derived xenograft models. Our study revealed a widespread active cross-talk between BRD4-dependent epigenetic and MTC-mediated epitranscriptomic networks, which provides a unique therapeutic vulnerability that can be leveraged in combined DNA repair-targeted therapy.


Subject(s)
Antineoplastic Agents , Bromodomain Containing Proteins , Nuclear Proteins , Humans , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Line, Tumor , DNA Repair , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Transcription Factors/genetics , Transcription Factors/metabolism , Epigenesis, Genetic , Bromodomain Containing Proteins/genetics , Bromodomain Containing Proteins/metabolism , Animals
SELECTION OF CITATIONS
SEARCH DETAIL