Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Publication year range
1.
Med Phys ; 51(1): 522-532, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37712869

ABSTRACT

BACKGROUND: Radiopharmaceutical therapy (RPT) is an increasingly adopted modality for treating cancer. There is evidence that the optimization of the treatment based on dosimetry can improve outcomes. However, standardization of the clinical dosimetry workflow still represents a major effort. Among the many sources of variability, the impact of using different Dose Voxel Kernels (DVKs) to generate absorbed dose (AD) maps by convolution with the time-integrated activity (TIA) distribution has not been systematically investigated. PURPOSE: This study aims to compare DVKs and assess the differences in the ADs when convolving the same TIA map with different DVKs. METHODS: DVKs of 3 × 3 × 3 mm3 sampling-nine for 177 Lu, nine for 90 Y-were selected from those most used in commercial/free software or presented in prior publications. For each voxel within a 11 × 11 × 11 matrix, the coefficient of variation (CoV) and the percentage difference between maximum and minimum values (% maximum difference) were calculated. The total absorbed dose per decay (SUM), calculated as the sum of all the voxel values in each kernel, was also compared. Publicly available quantitative SPECT images for two patients treated with 177 Lu-DOTATATE and PET images for two patients treated with 90 Y-microspheres were used, including organs at risk (177 Lu: kidneys; 90 Y: liver and healthy liver) and tumors' segmentations. For each patient, the mean AD to the volumes of interest (VOIs) was calculated using the different DVKs, the same TIA map and the same software tool for dose convolution, thereby focusing on the DVK impact. For each VOI, the % maximum difference of the mean AD between maximum and minimum values was computed. RESULTS: The CoV (% maximum difference) in voxels of normalized coordinates [0,0,0], [0,1,0], and [0,1,1] were 5%(21%), 9%(35%), and 10%(46%) for the 177 Lu DVKs. For the case of 90 Y, these values were 2%(9%), 4%(14%), and 4%(16%). The CoV (% maximum difference) for SUM was 9%(33%) for 177 Lu, and 4%(15%) for 90 Y. The variability of the mean tumor and organ AD was up to 19% and 15% in 177 Lu-DOTATATE and 90 Y-microspheres patients, respectively. CONCLUSIONS: This study showed a considerable AD variability due exclusively to the use of different DVKs. A concerted effort by the scientific community would contribute to decrease these discrepancies, strengthening the consistency of AD calculation in RPT.


Subject(s)
Radiometry , Radiopharmaceuticals , Humans , Liver , Radiometry/methods , Radiotherapy Planning, Computer-Assisted/methods , Software
2.
Phys Med ; 108: 102570, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36989974

ABSTRACT

PURPOSE: To determine the error detection sensitivity of a commercial log file-based system (LINACWatch®, LW) for integration into clinical routine and to compare it with a measurement device (OCTAVIUS 4D, Oct4D) for IMRT and VMAT delivery QA. MATERIALS AND METHODS: 76 VMAT/IMRT plans (H&N, prostate, rectum and breast) preliminarily classified according to their Modulation Complexity Score (MCS) calculated by LW, were considered. Receiver Operating Characteristic (ROC) Curves were used to establish gamma criteria for LW. 12 plans (3 for each site) were intentionally modified in order to introduce delivery errors regarding MLC, jaws, collimator, gantry and MU (for a total set of 168 incorrect plans) and irradiated on Oct4D; the corresponding log files were analysed by LW. Each incorrect plan was compared to the error-free plan using γ-index analysis for MLC, jaws and MU errors investigation and Root-Mean-Square (RMS) values for gantry and collimator errors investigation. RESULTS: MCS ranges values were: 0.10-0.20 for H&N, 0.21-0.40 for prostate and rectum, 0.41-1.00 for breast. From ROC curves, the Gamma Passing Rate (GPR) thresholds were: 87%, 92%, 99% for H&N, prostate and rectum, and breast, respectively. The 1.5%/1.5 mm/local criteria were adopted for the γ-analysis. LW sensitivity in detecting the introduced errors was higher when compared to Oct4D: 48.5% vs 30.4% respectively. CONCLUSIONS: LW can be considered useful complement to phantom-based delivery QA of IMRT/VMAT plans. The MCS tool is effective in detecting over or under modulated plans prior to pre-treatment QA. However, rigorous and routinely machine QCs are recommended.


Subject(s)
Radiotherapy, Intensity-Modulated , Male , Humans , Radiotherapy Planning, Computer-Assisted , Phantoms, Imaging , Prostate , Radiotherapy Dosage , Quality Assurance, Health Care
3.
J Pers Med ; 12(2)2022 Feb 02.
Article in English | MEDLINE | ID: mdl-35207693

ABSTRACT

Targeted radiation therapy (TRT) is a strategy increasingly adopted for the treatment of different types of cancer. The urge for optimization, as stated by the European Council Directive (2013/59/EURATOM), requires the implementation of a personalized dosimetric approach, similar to what already happens in external beam radiation therapy (EBRT). The purpose of this paper is to provide a thorough introduction to the field of personalized dosimetry in TRT, explaining its rationale in the context of optimization and describing the currently available methodologies. After listing the main therapies currently employed, the clinical workflow for the absorbed dose calculation is described, based on works of the most experienced authors in the literature and recent guidelines. Moreover, the widespread software packages for internal dosimetry are presented and critical aspects discussed. Overall, a selection of the most important and recent articles about this topic is provided.

4.
Phys Med ; 100: 142-152, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35839667

ABSTRACT

PURPOSE: To develop and validate an automated segmentation tool for COVID-19 lung CTs. To combine it with densitometry information in identifying Aerated, Intermediate and Consolidated Volumes in admission (CT1) and follow up CT (CT3). MATERIALS AND METHODS: An Atlas was trained on manually segmented CT1 of 250 patients and validated on 10 CT1 of the training group, 10 new CT1 and 10 CT3, by comparing DICE index between automatic (AUTO), automatic-corrected (AUTOMAN) and manual (MAN) contours. A previously developed automatic method was applied on HU lung density histograms to quantify Aerated, Intermediate and Consolidated Volumes. Volumes of subregions in validation CT1 and CT3 were quantified for each method. RESULTS: In validation CT1/CT3, manual correction of automatic contours was not necessary in 40% of cases. Mean DICE values for both lungs were 0.94 for AUTOVsMAN and 0.96 for AUTOMANVsMAN. Differences between Aerated and Intermediate Volumes quantified with AUTOVsMAN contours were always < 6%. Consolidated Volumes showed larger differences (mean: -95 ± 72 cc). If considering AUTOMANVsMAN volumes, differences got further smaller for Aerated and Intermediate, and were drastically reduced for consolidated Volumes (mean: -36 ± 25 cc). The average time for manual correction of automatic lungs contours on CT1 was 5 ± 2 min. CONCLUSIONS: An Atlas for automatic segmentation of lungs in COVID-19 patients was developed and validated. Combined with a previously developed method for lung densitometry characterization, it provides a fast, operator-independent way to extract relevant quantitative parameters with minimal manual intervention.


Subject(s)
COVID-19 , COVID-19/diagnostic imaging , Densitometry , Humans , Longitudinal Studies , Lung/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL