Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 114
Filter
1.
J Am Chem Soc ; 146(29): 19710-19719, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-38990184

ABSTRACT

Molecular transition metal chromophores play a central role in light harvesting and energy conversion. Recently, earth-abundant transition-metal-based chromophores have begun to challenge the dominance of platinum group metal complexes in this area. However, the development of new chromophores with optimized photophysical properties is still limited by a lack of synthetic methods, especially with respect to heteroleptic complexes with functional ligands. Here, we demonstrate a facile and efficient method for the combination of strong-field carbenes with the functional 2,2'-bibenzimidazole ligand in a heteroleptic iron(II) chromophore complex. Our approach yields two isomers that differ predominantly in their excited-state lifetimes based on the symmetry of the ligand field. Deprotonation of both isomers leads to a significant red-shift of the metal-to-ligand charge transfer (MLCT) absorption and a shortening of excited-state lifetimes. Femtosecond transient absorption spectroscopy in combination with quantum chemical simulations and resonance Raman spectroscopy reveals the complex relationship between protonation and photophysical properties. Protonation is found to tip the balance between MLCT and metal-centered (MC) excited states in favor of the former. This study showcases the first example of fine-tuning of the excited-state landscape in an iron(II) chromophore through second-sphere manipulations and provides a new perspective to the challenge of excited-state optimizations in 3d transition metal chromophores.

2.
Chemistry ; 30(1): e202302643, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-37754665

ABSTRACT

Based on quantum chemical calculations, we predict strong solvatochromism in a light-driven molecular photocatalyst for hydrogen generation, that is we show that the electronic and optical properties of the photocatalyst strongly depend on the solvent it is dissolved in. Our calculations in particular indicate a solvent-dependent relocation of the highest occupied molecular orbital (HOMO). Ground-state density functional theory and linear response time-dependent density functional theory calculations were applied in order to investigate the influence of implicit solvents on the structural, electronic and optical properties of a molecular photocatalyst. Only at high dielectric constants of the solvent, is the HOMO located at the metal center of the photosensitizer, whereas at low dielectric constants the HOMO is centered at the metal atom of the catalytically active complex. We elucidate the electronic origins of this strong solvatochromic effect and sketch the consequences of these insights for the use of photocatalysts in different environments.

3.
Chemphyschem ; 25(3): e202300767, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38084394

ABSTRACT

Photocatalysis is a contemporary research field given that the world's fossil energy resources including coal, mineral oil and natural gas are finite. The vast variety of photocatalytic systems demands for standardized protocols facilitating an objective comparison. While there are commonly accepted performance indicators such as the turnover number (TON) that are usually reported, to date there is no unified concept for the determination of TONs and the endpoint of the reaction during continuous measurements. Herein, we propose an algebraic approach using defined parameters and boundary conditions based on partial-least squares regression for generically calculating and predicting the turnover number and the endpoint of a photocatalytic experiment. Furthermore, the impact of the analysis period was evaluated with respect to the fidelity of the obtained TON, and the influence of the data point density along critical segments of the obtained fitting function is demonstrated.

4.
Chemphyschem ; 25(3): e202400018, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38303135

ABSTRACT

The front cover artwork is provided by the Institute of Analytical and Bioanalytical Chemistry and the Institute of Inorganic Chemistry I at Ulm University within the Collaborative Research Center TRR 234 CataLight. The image shows an algebraic approach to generically calculate and predict the turnover number (TON) and the endpoint of photocatalytic hydrogen gas evolution experiments. Read the full text of the Research Article at 10.1002/cphc.202300767.

5.
Macromol Rapid Commun ; 45(5): e2300448, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38232973

ABSTRACT

Soft matter integration of photosensitizers and catalysts provides promising solutions to developing sustainable materials for energy conversion. Particularly, hydrogels bring unique benefits, such as spatial control and 3D-accessibility of molecular units, as well as recyclability. Herein, the preparation of polyampholyte hydrogels based on poly(dehydroalanine) (PDha) is reported. Chemically crosslinked PDha with bis-epoxy poly(ethylene glycol) leads to a transparent, self-supporting hydrogel. Due to the ionizable groups on PDha, this 3D polymeric matrix can be anionic, cationic, or zwitterionic depending on the pH value, and its high density of dynamic charges has a potential for electrostatic attachment of charged molecules. The integration of the cationic molecular photosensitizer [Ru(bpy)3 ]2+ (bpy = 2,2'-bipyridine) is realized, which is a reversible process controlled by pH, leading to light harvesting hydrogels. They are further combined with either a thiomolybdate catalyst ([Mo3 S13 ]2- ) for hydrogen evolution reaction (HER) or a cobalt polyoxometalate catalyst (Co4 POM = [Co4 (H2 O)2 (PW9 O34 )2 ]10- ) for oxygen evolution reaction (OER). Under the optimized condition, the resulting hydrogels show catalytic activity in both cases upon visible light irradiation. In the case of OER, higher photosensitizer stability is observed compared to homogeneous systems, as the polymer environment seems to influence decomposition pathways.


Subject(s)
Alanine/analogs & derivatives , Hydrogels , Photosensitizing Agents , Photosensitizing Agents/chemistry , Hydrogels/chemistry , Light , Catalysis
6.
J Chem Phys ; 160(8)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38415835

ABSTRACT

A nitrogen K-edge x-ray absorption near-edge structure (XANES) survey is presented for tetrapyrido[3,2-a:2',3'-c:3″,2″-h:2‴,3‴-j]phenazine (tpphz)-bridged bimetallic assemblies that couple chromophore and catalyst transition metal complexes for light driven catalysis, as well as their individual molecular constituents. We demonstrate the high N site sensitivity of the N pre-edge XANES features, which are energetically well-separated for the phenazine bridge N atoms and for the individual metal-bound N atoms of the inner coordination sphere ligands. By comparison with the time-dependent density functional theory calculated spectra, we determine the origins of these distinguishable spectral features. We find that metal coordination generates large shifts toward higher energy for the metal-bound N atoms, with increasing shift for 3d < 4d < 5d metal bonding. This is attributed to increasing ligand-to-metal σ donation that increases the effective charge of the bound N atoms and stabilizes the N 1s core electrons. In contrast, the phenazine bridge N pre-edge peak is found at a lower energy due to stabilization of the low energy electron accepting orbital localized on the phenazine motif. While no sensitivity to ground state electronic coupling between the individual molecular subunits was observed, the spectra are sensitive to structural distortions of the tpphz bridge. These results demonstrate N K-edge XANES as a local probe of electronic structure in large bridging ligand motifs, able to distinctly investigate the ligand-centered orbitals involved in metal-to-ligand and ligand-to-ligand electron transfer following light absorption.

7.
Chemistry ; 29(15): e202203469, 2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36519520

ABSTRACT

CLICK-chemistry has become a universal route to covalently link organic molecules functionalized with azides and alkynes, respectively. Here, we report how CLICK-chemistry can be used to attach oligoaromatic organic moieties to Dawson-type polyoxometalates. In step one, the lacunary Dawson anion [α2 -P2 W17 O61 ]6- is functionalized with phosphonate anchors featuring peripheral azide groups. In step two, this organic-inorganic hybrid undergoes microwave-assisted CLICK coupling. We demonstrate the versatility of this route to access a series of Dawson anions covalently functionalized with oligoaromatic groups. The supramolecular chemistry and aggregation of these systems in solution is explored, and we report distinct changes in charge-transfer behavior depending on the size of the oligoaromatic π-system.

8.
Chemistry ; 29(36): e202202722, 2023 Jun 27.
Article in English | MEDLINE | ID: mdl-36807573

ABSTRACT

A review. In recent decades, mimicking natural photosynthesis by artificial photocatalysis represented a major research direction with the ultimate goal of reducing fossil fuel consumption through efficient solar energy harvesting. To transfer molecular photocatalysis from the lab scale to an industrially relevant process, it is important to overcome instability problems of the catalysts during light-driven operation. As it is well-known that many of the typically utilized noble metal-based catalytic centres (e. g. Pt and Pd) undergo particle formation during (photo)catalysis and thus switch the whole process from a homogeneous into a heterogeneous one, an understanding of the factors governing particle formation is crucially needed. The review therefore focuses on di- and oligonuclear photocatalysts bearing a range of different bridging ligand architectures for drawing structure-catalyst-stability relationships in light-driven intramolecular reductive catalysis. In addition, ligand effects at the catalytic centre and their implications for catalytic activity in intermolecular systems will be discussed, as will important insights into the future design of operationally stable catalysts.

9.
Molecules ; 28(4)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36838893

ABSTRACT

Rhenium(I) complexes of type [Re(CO)3(NN)Cl] (NN = α-diimine) with MLCT absorption in the orange-red region of the visible spectrum have been synthesized and fully characterized, including single crystal X-ray diffraction on two complexes. The strong bathochromic shift of MLCT absorption was achieved through extension of the π-system of the electron-poor bidiazine ligand 4,4'-bipyrimidine by the addition of fused phenyl rings, resulting in 4,4'-biquinazoline. Furthermore, upon anionic cyclization of the twisted bidiazine, a new 4N-doped perylene ligand, namely, 1,3,10,12-tetraazaperylene, was obtained. Electrochemical characterization revealed a significant stabilization of the LUMO in this series, with the first reduction of the azaperylene found at E1/2(0/-) = -1.131 V vs. Fc+/Fc, which is the most anodic half-wave potential observed for N-doped perylene derivatives so far. The low LUMO energies were directly correlated to the photophysical properties of the respective complexes, resulting in a strongly red-shifted MLCT absorption band in chloroform with a λmax = 586 nm and high extinction coefficients (ε586nm > 5000 M-1 cm-1) ranging above 700 nm in the case of the tetraazaperylene complex. Such low-energy MLCT absorption is highly unusual for Re(I) α-diimine complexes, for which these bands are typically found in the near UV. The reported 1,3,10,12-tetraazaperylene complex displayed the [Re(CO)3(α-diimine)Cl] complex with the strongest MLCT red shift ever reported. UV-Vis NIR spectroelectrochemical investigations gave further insights into the nature and stability of the reduced states. The electron-poor ligands explored herein open up a new path for designing metal complexes with strongly red-shifted absorption, thus enabling photocatalysis and photomedical applications with low-energy, tissue-penetrating red light in future.


Subject(s)
Coordination Complexes , Perylene , Ligands , Light , Coordination Complexes/chemistry , Crystallography, X-Ray
10.
Angew Chem Int Ed Engl ; 62(48): e202308803, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-37433755

ABSTRACT

Understanding the factors that determine the luminescence lifetime of transition metal compounds is key for applications in photocatalysis and photodynamic therapy. Here we show that for [ Ru ( bpy ) 3 ] 2 + ${[{\rm{Ru}}({\rm{bpy}})_{\rm{3}} ]^{{\rm{2 + }}} }$ (bpy = 2,2'-bipyridine), the generally accepted idea that emission lifetimes can be controlled optimizing the energy barrier from the emissive triplet metal-to-ligand charge-transfer (3 MLCT) state to the thermally-activated triplet metal-centered (3 MC) state or the energy gap between both states is a misconception. Further, we demonstrate that considering a single relaxation pathway determined from the minimum that is lowest in energy leads to wrong temperature-dependent emission lifetimes predictions. Instead, we obtain excellent agreement with experimental temperature-dependent lifetimes when an extended kinetic model that includes all the pathways related to multiple Jahn-Teller isomers and their effective reaction barriers is employed. These concepts are essential to correctly design other luminescent transition metal complexes with tailored emission lifetimes based on theoretical predictions.

11.
Angew Chem Int Ed Engl ; 62(44): e202306287, 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37519152

ABSTRACT

Currently, most photosensitizers and catalysts used in the field of artificial photosynthesis are still based on rare earth metals and should thus be utilized as efficiently and economically as possible. While repair of an inactivated catalyst is a potential mitigation strategy, this remains a challenge. State-of-the-art methods are crucial for characterizing reaction products during photocatalysis and repair, and are currently based on invasive analysis techniques limiting real-time access to the involved mechanisms. Herein, we use an innovative in situ technique for detecting both initially evolved hydrogen and after active repair via advanced non-invasive rotational Raman spectroscopy. This facilitates unprecedently accurate monitoring of gaseous reaction products and insight into the mechanism of active repair during light-driven catalysis enabling the identification of relevant mechanistic details along with innovative repair strategies.

12.
Chemistry ; 28(1): e202104449, 2022 Jan 03.
Article in English | MEDLINE | ID: mdl-34958156

ABSTRACT

Invited for the front cover of this issue are Stefanie Tschierlei, Sven Rau and co-workers. The image shows the fusion of an organic chromophore with a RuII polypyridine moiety resulting in a unique bichromophoric photosensitizer. Read the full text of the article at 10.1002/chem.202103609.

13.
Chemistry ; 28(1): e202103609, 2022 Jan 03.
Article in English | MEDLINE | ID: mdl-34767288

ABSTRACT

Multichromophoric systems based on a RuII polypyridine moiety containing an additional organic chromophore are of increasing interest with respect to different light-driven applications. Here, we present the synthesis and detailed characterization of a novel RuII photosensitizer, namely [(tbbpy)2 Ru((2-(perylen-3-yl)-1H-imidazo[4,5-f][1,10]-phenanthrolline))](PF6 )2 RuipPer, that includes a merged perylene dye in the back of the ip ligand. This complex features two emissive excited states as well as a long-lived (8 µs) dark state in acetonitrile solution. Compared to prototype [(bpy)3 Ru]2+ -like complexes, a strongly altered absorption (ϵ=50.3×103  M-1 cm-1 at 467 nm) and emission behavior caused by the introduction of the perylene unit is found. A combination of spectro-electrochemistry and time-resolved spectroscopy was used to elucidate the nature of the excited states. Finally, this photosensitizer was successfully used for the efficient formation of reactive singlet oxygen.

14.
Chemistry ; 28(61): e202201931, 2022 Nov 02.
Article in English | MEDLINE | ID: mdl-35920047

ABSTRACT

The ambitious goal of artificial photosynthesis is to develop active systems that mimic nature and use light to split water into hydrogen and oxygen. Intramolecular design concepts are particularly promising. Herein, we firstly present an intramolecular photocatalyst integrating a perylene-based light-harvesting moiety and a catalytic rhodium center (RhIII phenPer). The excited-state dynamics were investigated by means of steady-state and time-resolved absorption and emission spectroscopy. The studies reveal that photoexcitation of RhIII phenPer yields the formation of a charge-separated intermediate, namely RhII phenPer⋅+ , that results in a catalytically active species in the presence of protons.


Subject(s)
Perylene , Rhodium , Perylene/chemistry , Niacinamide , Rhodium/chemistry , Photosynthesis , Catalysis
15.
Chemistry ; 28(35): e202200490, 2022 Jun 21.
Article in English | MEDLINE | ID: mdl-35481716

ABSTRACT

To optimize light-driven catalytic processes, light-mediated multi-electron transfer dynamics in molecular dyads need to be studied and correlated with structural changes focusing on the catalytically active metastable intermediates. Here, spectro-electrochemistry has been employed to investigate the structure-dependent photoelectron transfer kinetics in catalytically active intermediates of two Ru-Rh catalysts for light-driven NAD+ reduction. The excited-state reactivity of short-lived intermediates was studied along different photoreaction pathways by resonance Raman and time-resolved transient absorption spectro-electrochemistry with sub-picosecond time resolution under operando conditions. The results demonstrate, for the first time, how the bridging ligand serves as a (multi-)electron storage structure, mediates the strength of the electronic coupling of catalytic and photocenter and impacts the targeted electron transfer as well as parasitic electron-transfer kinetics.

16.
Chemistry ; 28(51): e202200766, 2022 Sep 12.
Article in English | MEDLINE | ID: mdl-35719124

ABSTRACT

The synthesis and detailed characterization of a new Ru polypyridine complex containing a heteroditopic bridging ligand with previously unexplored metal-metal distances is presented. Due to the twisted geometry of the novel ligand, the resultant division of the ligand in two distinct subunits leads to steady state as well as excited state properties of the corresponding mononuclear Ru(II) polypyridine complex resembling those of prototype [Ru(bpy)3 ]2+ (bpy=2,2'-bipyridine). The localization of the initially optically excited and the nature of the long-lived excited states on the Ru-facing ligand spheres is evaluated by resonance Raman and fs-TA spectroscopy, respectively, and supported by DFT and TDDFT calculations. Coordination of a second metal (Zn or Rh) to the available bis-pyrimidyl-like coordination sphere strongly influences the frontier orbitals, apparent by, for example, luminescence quenching. Thus, the new bridging ligand motif offers electronic properties, which can be adjusted by the nature of the second metal center. Using the heterodinuclear Ru-Rh complex, visible light-driven reduction of NAD+ to NADH was achieved, highlighting the potential of this system for photocatalytic applications.


Subject(s)
Ruthenium , Density Functional Theory , Ligands , Luminescence , Photosynthesis , Ruthenium/chemistry
17.
Angew Chem Int Ed Engl ; 61(28): e202114106, 2022 Jul 11.
Article in English | MEDLINE | ID: mdl-35698245

ABSTRACT

Light-driven homogeneous and heterogeneous catalysis require a complex interplay between light absorption, charge separation, charge transfer, and catalytic turnover. Optical and irradiation parameters as well as reaction engineering aspects play major roles in controlling catalytic performance. This multitude of factors makes it difficult to objectively compare light-driven catalysts and provide an unbiased performance assessment. This Scientific Perspective highlights the importance of collecting and reporting experimental data in homogeneous and heterogeneous light-driven catalysis. A critical analysis of the benefits and limitations of the commonly used experimental indicators is provided. Data collection and reporting according to FAIR principles is discussed in the context of future automated data analysis. The authors propose a minimum dataset as a basis for unified collecting and reporting of experimental data in homogeneous and heterogeneous light-driven catalysis. The community is encouraged to support the future development of this parameter list through an open online repository.

18.
Angew Chem Int Ed Engl ; 61(11): e202114842, 2022 03 07.
Article in English | MEDLINE | ID: mdl-34932847

ABSTRACT

During the light-dependent reaction of photosynthesis, green plants couple photoinduced cascades of redox reactions with transmembrane proton translocations to generate reducing equivalents and chemical energy in the form of NADPH (nicotinamide adenine dinucleotide phosphate) and ATP (adenosine triphosphate), respectively. We mimic these basic processes by combining molecular ruthenium polypyridine-based photocatalysts and inverted vesicles derived from Escherichia coli. Upon irradiation with visible light, the interplay of photocatalytic nicotinamide reduction and enzymatic membrane-located respiration leads to the simultaneous formation of two biologically active cofactors, NADH (nicotinamide adenine dinucleotide) and ATP, respectively. This inorganic-biologic hybrid system thus emulates the cofactor delivering function of an active chloroplast.


Subject(s)
Chloroplasts/chemistry , Escherichia coli Proteins/chemistry , Photosensitizing Agents/chemistry , Pyridines/chemistry , Ruthenium/chemistry , Catalysis , Photochemical Processes
19.
Chemistry ; 27(68): 16840-16845, 2021 Dec 06.
Article in English | MEDLINE | ID: mdl-34547151

ABSTRACT

A series of three Ru(II) polypyridine complexes was investigated for the selective photocatalytic oxidation of NAD(P)H to NAD(P)+ in water. A combination of (time-resolved) spectroscopic studies and photocatalysis experiments revealed that ligand design can be used to control the mechanism of the photooxidation: For prototypical Ru(II) complexes a 1 O2 pathway was found. Rudppz ([(tbbpy)2 Ru(dppz)]Cl2 , tbbpy=4,4'-di-tert-butyl-2,2'-bipyridine, dppz=dipyrido[3,2-a:2',3'-c]phenazine), instead, initiated the cofactor oxidation by electron transfer from NAD(P)H enabled by supramolecular binding between substrate and catalyst. Expulsion of the photoproduct NAD(P)+ from the supramolecular binding site in Rudppz allowed very efficient turnover. Therefore, Rudppz permits repetitive selective assembly and oxidative conversion of reduced naturally occurring nicotinamides by recognizing the redox state of the cofactor under formation of H2 O2 as additional product. This photocatalytic process can fuel discontinuous photobiocatalysis.


Subject(s)
Organometallic Compounds , Ruthenium , Binding Sites , Ligands , NAD
20.
Chemistry ; 27(68): 16871-16878, 2021 Dec 06.
Article in English | MEDLINE | ID: mdl-34705303

ABSTRACT

The substitution behavior of the monodentate Cl ligand of a series of ruthenium(II) terpyridine complexes (terpyridine (tpy)=2,2':6',2''-terpyridine) has been investigated. 1 H NMR kinetic experiments of the dissociation of the chloro ligand in D2 O for the complexes [Ru(tpy)(bpy)Cl]Cl (1, bpy=2,2'-bipyridine) and [Ru(tpy)(dppz)Cl]Cl (2, dppz=dipyrido[3,2-a:2',3'-c]phenazine) as well as the binuclear complex [Ru(bpy)2 (tpphz)Ru(tpy)Cl]Cl3 (3 b, tpphz=tetrapyrido[3,2-a:2',3'-c:3'',2''-h:2''',3'''-j]phenazine) were conducted, showing increased stability of the chloride ligand for compounds 2 and 3 due to the extended π-system. Compounds 1-5 (4=[Ru(tbbpy)2 (tpphz)Ru(tpy)Cl](PF6 )3 , 5=[Ru(bpy)2 (tpphz)Ru(tpy)(C3 H8 OS)/(H2 O)](PF6 )3 , tbbpy=4,4'-di-tert-butyl-2,2'-bipyridine) are tested for their ability to run water oxidation catalysis (WOC) using cerium(IV) as sacrificial oxidant. The WOC experiments suggest that the stability of monodentate (chloride) ligand strongly correlates to catalytic performance, which follows the trend 1>2>5≥3>4. This is also substantiated by quantum chemical calculations, which indicate a stronger binding for the chloride ligand based on the extended π-systems in compounds 2 and 3. Additionally, a theoretical model of the mechanism of the oxygen evolution of compounds 1 and 2 is presented; this suggests no differences in the elementary steps of the catalytic cycle within the bpy to the dppz complex, thus suggesting that differences in the catalytic performance are indeed based on ligand stability. Due to the presence of a photosensitizer and a catalytic unit, binuclear complexes 3 and 4 were tested for photocatalytic water oxidation. The bridging ligand architecture, however, inhibits the effective electron-transfer cascade that would allow photocatalysis to run efficiently. The findings of this study can elucidate critical factors in catalyst design.

SELECTION OF CITATIONS
SEARCH DETAIL