Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
J Comput Assist Tomogr ; 41(3): 489-493, 2017.
Article in English | MEDLINE | ID: mdl-27779614

ABSTRACT

We present a newly reposted scanner-based artifact-with 4 potential patients' head computed tomography (CT) cases-the "Air in the CT X-ray Tube Oil" artifact with a 64-slice multidetector CT. This artifact mimics diseases, which cause hypodense findings in CT images. It can be difficult to notice in the clinical patient imaging but can be also very difficult to verify in quality control tests.


Subject(s)
Artifacts , Brain/diagnostic imaging , Multidetector Computed Tomography/instrumentation , Quality Control , Tomography Scanners, X-Ray Computed , Adult , Air , Female , Humans , Male , Middle Aged , Multidetector Computed Tomography/methods , Neuroimaging/methods , Oils , Young Adult
2.
Magn Reson Med ; 74(1): 249-259, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25104181

ABSTRACT

PURPOSE: To evaluate the sensitivity of quantitative MRI techniques (T1 , T1,Gd , T2 , continous wave (CW) T1ρ dispersion, adiabatic T1ρ , adiabatic T2ρ , RAFF and inversion-prepared magnetization transfer (MT)) for assessment of human articular cartilage with varying degrees of natural degeneration. METHODS: Osteochondral samples (n = 14) were obtained from the tibial plateaus of patients undergoing total knee replacement. MRI of the specimens was performed at 9.4T and the relaxation time maps were evaluated in the cartilage zones. For reference, quantitative histology, OARSI grading and biomechanical measurements were performed and correlated with MRI findings. RESULTS: All MRI parameters, except T1,Gd , showed statistically significant differences in tangential and full-thickness regions of interest (ROIs) between early and advanced osteoarthritis (OA) groups, as classified by OARSI grading. CW-T1ρ showed significant dispersion in all ROIs and featured classical laminar structure of cartilage with spin-lock powers below 1000 Hz. Adiabatic T1ρ , T2ρ , CW-T1ρ, MT, and RAFF correlated strongly with OARSI grade and biomechanical parameters. CONCLUSION: MRI parameters were able to differentiate between early and advanced OA. Furthermore, rotating frame methods, namely adiabatic T1ρ , adiabatic T2ρ , CW-T1ρ , and RAFF, as well as MT experiment correlated strongly with biomechanical parameters and OARSI grade, suggesting high sensitivity of the parameters for cartilage degeneration. Magn Reson Med 74:249-259, 2015. © 2014 Wiley Periodicals, Inc.

3.
Duodecim ; 131(2): 194-5, 2015.
Article in Fi | MEDLINE | ID: mdl-26237921

ABSTRACT

Degenerative rotator cuff tendon disease (tendinopathy) is the most common disorder of the shoulder. A full-thickness tear of the rotator cuff may be caused by degeneration, or it may develop due to an acute trauma. The typical symptoms include pain and functional deficiencies. Diagnostics is based on clinical findings. The primary radiologic imaging is x-ray. Degenerative tendon diseases are primarily treated conservatively in primary health care, the most important treatment modality is physiotherapy-guided therapeutic rehabilitation. Surgical treatment is considered in full-thickness rotator cuff tears, especially after traumatic onset.


Subject(s)
Rotator Cuff/pathology , Shoulder , Tendinopathy/diagnosis , Tendinopathy/therapy , Diagnosis, Differential , Humans , Physical Therapy Modalities , Primary Health Care
4.
Radiology ; 269(1): 113-21, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23674789

ABSTRACT

PURPOSE: To evaluate the status of articular cartilage and bone in an equine model of spontaneous repair by using the sweep imaging with Fourier transform (SWIFT) magnetic resonance (MR) imaging technique. MATERIALS AND METHODS: Experiments were approved by the Utrecht University Animal Ethics Committee. Six-millimeter-diameter chondral (n = 5) and osteochondral (n = 5, 3-4 mm deep into subchondral bone) defects were created in the intercarpal joints of seven 2-year-old horses and examined with SWIFT at 9.4 T after spontaneous healing for 12 months. Conventional T2 maps and gradient-echo images were obtained for comparison, and histologic assessment of cartilage and micro-computed tomography (CT) of bone were performed for reference. Signal-to-noise ratio (SNR) analysis was performed, and a radiologist evaluated the MR images. Structural bone parameters were derived from SWIFT and micro-CT datasets. Significance of differences was investigated with the Wilcoxon signed rank test and Pearson correlation analysis. RESULTS: SWIFT was able to depict the different outcomes of spontaneous healing of focal chondral versus osteochondral defects. SWIFT produced constant signal intensity throughout cartilage, whereas T2 mapping showed elevated T2 values (P = .06) in repair tissue (mean T2 in superficial region of interest in an osteochondral lesion = 50.0 msec ± 10.2) in comparison to adjacent intact cartilage (mean T2 = 32.7 msec ± 4.2). The relative SNR in the subchondral plate with SWIFT (0.91) was more than four times higher than that with conventional fast spin-echo (0.12) and gradient-echo (0.19) MR imaging. The correlation between bone volume-to-tissue volume fractions determined with SWIFT and micro-CT was significant (r = 0.83, P < .01). CONCLUSION: SWIFT enabled assessment of spontaneous osteochondral repair in an equine model.


Subject(s)
Fracture Healing , Fractures, Bone/pathology , Fractures, Cartilage/pathology , Image Interpretation, Computer-Assisted/methods , Joints/injuries , Joints/pathology , Magnetic Resonance Imaging/methods , Algorithms , Animals , Fourier Analysis , Horses , Image Enhancement/methods , Reproducibility of Results , Sensitivity and Specificity
5.
Radiat Prot Dosimetry ; 198(4): 229-237, 2022 Mar 30.
Article in English | MEDLINE | ID: mdl-35313335

ABSTRACT

The aim of this study was to evaluate how out-of-plane patient shielding affects radiation exposure parameters and tube current modulation on different vendors' computed tomography (CT) scanners. Helical CT scans were performed using two homogenous phantoms to mimic patient attenuation. Four CT scanners from three vendors were investigated by varying the distance of the patient shield from the border of the imaging volume. Scans were performed with a shield placed before and after the localizer. Changes in volume computed tomography dose index (CTDIvol), dose-length product (DLP) and tube current-time products were studied. Out-of-field lead shield increased the CTDIvol and DLP values for each scanner at least for one scan setting when the shield was present in the localizer. The most notable changes were recorded with >1.3 pitch values when the shield was closest to the scanned volume (2.5 cm), and the scan direction was towards the shield. The usage of patient shields in the localizer CT scans can disturb TCM even when placed 7.5 cm away from the edge of the scan.


Subject(s)
Radiation Exposure , Humans , Phantoms, Imaging , Radiation Dosage , Tomography Scanners, X-Ray Computed , Tomography, X-Ray Computed/methods
6.
Biomed Phys Eng Express ; 8(3)2022 04 05.
Article in English | MEDLINE | ID: mdl-35320794

ABSTRACT

Purpose. The radiology department faces a large number of reconstruction algorithms and kernels during their computed tomography (CT) optimization process. These reconstruction methods are proprietary and ensuring consistent image quality between scanners is becoming increasingly difficult. This study contributes to solving this challenge in CT image quality harmonization by modifying and evaluating a reconstruction algorithm and kernel matching scheme.Methods. The Catphan 600 phantom was scanned with six different CT scanners from four vendors. The phantom was scanned with volumetric CT dose indices (CTDIvols) of 10 mGy and 40 mGy, and the data were reconstructed using 1 mm and 5 mm slices with each combination of reconstruction algorithm, body region kernel, and iterative and deep learning reconstruction strength. A matching scheme developed in previous research, which utilizes the noise power spectrum (NPS) and modulation transfer function (MTF), was modified based on our organization's needs and used to identify the matching reconstruction algorithms and kernels between different scanners.Results. The matching paradigm produced good matching results, and the mean ± standard deviation (median) matching function values for the different acquisition settings were (a value of 1 indicates a perfect match): CTDIvol 10 mGy, 1 mm slice: 0.78 ± 0.31 (0.94); CTDIvol 10 mGy, 5 mm slice: 0.75 ± 0.33 (0.93); CTDIvol 40 mGy, 1 mm slice: 0.81 ± 0.28 (0.95); CTDIvol 40 mGy, 5 mm slice: 0.75 ± 0.33 (0.93). In general, soft reconstruction kernels, i.e., noise-reducing kernels that reduce sharpness, of one vendor were matched with the soft kernels of another vendor, and vice versa for sharper kernels. Conclusions. Combined quantitative assessment of NPS and MTF allows effective strategy for harmonization of technical image quality between different CT scanners. A software was also shared to support CT image quality harmonization in other institutions.


Subject(s)
Algorithms , Tomography, X-Ray Computed , Phantoms, Imaging , Signal-To-Noise Ratio , Tomography Scanners, X-Ray Computed , Tomography, X-Ray Computed/methods
7.
Sci Rep ; 7(1): 9606, 2017 08 29.
Article in English | MEDLINE | ID: mdl-28852032

ABSTRACT

In highly organized tissues, such as cartilage, tendons and white matter, several quantitative MRI parameters exhibit dependence on the orientation of the tissue constituents with respect to the main imaging magnetic field (B0). In this study, we investigated the dependence of multiple relaxation parameters on the orientation of articular cartilage specimens in the B0. Bovine patellar cartilage-bone samples (n = 4) were investigated ex vivo at 9.4 Tesla at seven different orientations, and the MRI results were compared with polarized light microscopy findings on specimen structure. Dependences of T2 and continuous wave (CW)-T1ρ relaxation times on cartilage orientation were confirmed. T2 (and T2*) had the highest sensitivity to orientation, followed by TRAFF2 and adiabatic T2ρ. The highest dependence was seen in the highly organized deep cartilage and the smallest in the least organized transitional layer. Increasing spin-lock amplitude decreased the orientation dependence of CW-T1ρ. T1 was found practically orientation-independent and was closely followed by adiabatic T1ρ. The results suggest that T1 and adiabatic T1ρ should be preferred for orientation-independent quantitative assessment of organized tissues such as articular cartilage. On the other hand, based on the literature, parameters with higher orientation anisotropy appear to be more sensitive to degenerative changes in cartilage.


Subject(s)
Anisotropy , Magnetic Resonance Imaging , Magnetic Resonance Imaging/methods , Microscopy , Organ Specificity
8.
J Orthop Res ; 35(4): 785-792, 2017 04.
Article in English | MEDLINE | ID: mdl-27227565

ABSTRACT

Despite increasing evidence that subchondral bone contributes to osteoarthritis (OA) pathogenesis, little is known about local changes in bone structure compared to cartilage degeneration. This study linked structural adaptation of subchondral bone with histological OA grade. Twenty-five osteochondral samples of macroscopically different degeneration were prepared from tibiae of 14 patients. Samples were scanned with micro-computed tomography (µCT) and both conventional structural parameters and novel 3D parameters based on local patterns were analyzed from the subchondral plate and trabecular bone. Subsequently, samples were processed for histology and evaluated for OARSI grade. Each bone parameter and OARSI grade was compared to assess structural adaptation of bone with OA severity. In addition, thicknesses of cartilage, calcified cartilage, and subchondral plate were analyzed from histological sections and compared with subchondral bone plate thickness from µCT. With increasing OARSI grade, the subchondral plate became thicker along with decreased specific bone surface, while there was no change in tissue mineral density. Histological analysis showed that subchondral plate thickness from µCT also includes calcified cartilage. Entropy of local patterns increased with OA severity, reflecting higher tissue heterogeneity. In the trabecular compartment, bone volume fraction and both trabecular thickness and number increased with OARSI grade while trabecular separation and structure model index decreased. Also, elevation of local patterns became longitudinal in the subchondral plate and axial transverse in trabecular bone with increasing OARSI grade. This study demonstrates the possibility of radiological assessment of OA severity by structural analysis of bone. © 2016 The Authors. Journal of Orthopaedic Research Published by Wiley Periodicals, Inc. J Orthop Res 35:785-792, 2017.


Subject(s)
Bone and Bones/physiopathology , Osteoarthritis/diagnostic imaging , Aged , Bone and Bones/diagnostic imaging , Calcinosis , Cartilage/diagnostic imaging , Cartilage/physiopathology , Cartilage, Articular/diagnostic imaging , Cartilage, Articular/pathology , Female , Humans , Imaging, Three-Dimensional , Male , Osteoarthritis/physiopathology , Severity of Illness Index , Tibia/diagnostic imaging , Tibia/physiopathology , X-Ray Microtomography
SELECTION OF CITATIONS
SEARCH DETAIL