Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Molecules ; 27(19)2022 Oct 05.
Article in English | MEDLINE | ID: mdl-36235128

ABSTRACT

Breast cancer is the second most common cancer-related cause of death for women throughout the globe. In spite of some effective measures, the main concerns with traditional anti-cancer chemotherapy are its low bioavailability, physical side effects, acquired resistance of cancer cells and non-specific targeting. Now researchers have taken the initiative to establish natural product-based therapy methods and to identify viable hits for future lead optimization in the development of breast cancer medication. Our study aims to identify the potent phytocompounds from five very popular Indian spices (Zingiber officinale Roscoe, Cuminum cyminum L., Piper nigrum L., Curcuma longa L., and Allium sativum L.). From these spices, a total of 200 phytocompounds were identified and screened against three target genes, namely, cyclin-dependent kinase 8 (CDK 8), progesterone receptor (PR) and epidermal growth factor receptor (EGFR), through structure-based virtual screening using iGEMDOCK 2.1 software. Based on the binding affinity score, the top three phytocompounds against each target protein (cynaroside (-149.66 Kcal/mol), apigetrin (-139.527 Kcal/mol) and curcumin (-138.149 Kcal/mol) against CDK8; apigetrin (-123.298 Kcal/mol), cynaroside (-118.635 Kcal/mol) and xyloglucan (-113.788 Kcal/mol) against PR; cynaroside (-119.18 Kcal/mol), apigetrin (-105.185 Kcal/mol) and xyloglucan (-105.106 Kcal/mol) against EGFR) were selected. Apigetrin, cynaroside, curcumin, and xyloglucan were finally identified for further docking analysis with the respective three target proteins. Autodock 4.2 was applied to screen the optimal binding position and to assess the relative intensity of binding interactions. In addition, the ADME/T property checks and bioactivity scores analysis of were performed to understand the suitability of these four phytocompounds to be potential candidates for developing effective and non-toxic anticancer agents. Based on this in silico analysis, we believe this study could contribute to current efforts to develop new drugs for treating breast cancer.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Curcumin , Antineoplastic Agents/chemistry , Breast Neoplasms/drug therapy , Curcumin/chemistry , Cyclin-Dependent Kinase 8/metabolism , ErbB Receptors/metabolism , Female , Humans , Molecular Docking Simulation , Receptors, Progesterone/metabolism
2.
Plants (Basel) ; 12(7)2023 Mar 29.
Article in English | MEDLINE | ID: mdl-37050122

ABSTRACT

Causonis trifolia (L.) Mabb. & J.Wen, commonly known as "fox grape", is an ethnomedicinally important twining herb of the Vitaceae family, and it is used by ethnic communities for its wide range of therapeutic properties. Our research aims to investigate the chemical composition; antioxidant, anti-inflammatory, and antidiabetic activities; and mechanisms of interaction between the identified selective chemical compounds and the target proteins associated with antioxidant, anti-inflammatory, and antidiabetic effects of the optimised phenolic extract of Causonis trifolia (L.) Mabb. & J.Wen, shoot (PECTS) to endorse the plant as a potential drug candidate for a future bioprospecting programme. Here, we employed the response surface methodology (RSM) with a Box-Behnken design to enrich the methanolic extract of C. trifolia shoot with phenolic ingredients by optimising three key parameters: solvent concentration (% v/v, methanol:water), extraction temperature (°C), and extraction duration (hours). From the quantitative phytochemical estimation, it was evident that the PECTS contained good amounts of phenolics, flavonoids, tannins, and alkaloids. During the HPLC analysis, we identified a total of eight phenolic and flavonoid compounds (gallic acid, catechin hydrate, chlorogenic acid, caffeic acid, p-coumaric acid, sinapic acid, coumarin, and kaempferol) and quantified their respective contents from the PECTS. The GC-MS analysis of the PECTS highlighted the presence of 19 phytochemicals. In addition, the bioactivity study of the PECTS showed remarkable potentiality as antioxidant, anti-inflammatory, and antidiabetic agents. In silico molecular docking and computational molecular modelling were employed to investigate the anti-inflammatory, antioxidant, and antidiabetic properties of the putative bioactive compounds derived from the PECTS using the GC-MS technique to understand the drug-receptor interactions, including their binding pattern. Out of the 19 phytocompounds identified by the GC-MS analysis, one compound, ergosta-5,22-dien-3-ol, acetate, (3ß,22E), exhibited the best binding conformations with the target proteins involved in anti-inflammatory (e.g., Tnf-α and Cox-2), antioxidant (SOD), and antidiabetic (e.g., α-amylase and aldo reductase) activities. The nontoxic nature of this optimised extract was also evident during the in vitro cell toxicity assay against the Vero cell line and the in vivo acute toxicity study on BALB/c mice. We believe the results of the present study will pave the way for the invention of novel drugs efficacious for several ailments using the C. trifolia plant.

3.
Phytomedicine ; 107: 154456, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36152592

ABSTRACT

BACKGROUND: Eugenol (1-allyl-4-hydroxy-3-methoxybenzene) is an important simple phenolic compound mainly derived from Syzygium aromaticum and many other plants. It is traditionally used in ayurveda and aromatherapy for the healing of many health problems. It also has significant applications in dentistry, agriculture, and flavour industry. This simple phenol has an eclectic range of pharmacological properties, such as antioxidant, anti-inflammatory, and anticancer activities. It is regarded as safe by the Food and Agricultural Organization of the United Nations due to its non-carcinogenic and non-mutagenic properties. PURPOSE: The aim of this comprehensive review is to present a critical and systematic assessment of the antitumor ability of eugenol and its associated molecular targets in various cancers. METHODS: It was carried out following the preferred reporting items for systematic reviews and meta-analysis guidelines. Risk of bias assessment was performed using the SYstematic review centre for laboratory animal experimentation guidelines. The literature search was performed in standard databases such as Science Direct, PubMed, Google Scholar, Scopus, and Web of Science using the keywords 'eugenol' or 'eugenol essential oil' and 'anti-cancer properties of eugenol'. RESULTS: The scientific information from fifty-three studies was encompassed in the present review work. Eugenol exhibits significant anticancer effects in a variety of biological pathways, namely apoptosis, autophagy, cell cycle progression, inflammation, invasion, and metastasis. Eugenol-induced apoptosis has been noticed in osteosarcoma, skin tumors, melanoma, leukemia, gastric and mast cells. It decreases the expression of cyclin D1, cyclin B, proliferating cell nuclear antigen, nuclear factor-ƙB, inhibitor of nuclear factor ƙB, and B-cell lymphoma-2. Eugenol increases the expression of B-cell lymphoma-2 (BCL-2) associated X, BH3-interacting domain death agonist, BCL-2 associated agonist of cell death, apoptotic protease activating factor 1, cytochrome c, p21, and p53. CONCLUSION: The anticancer potential exhibited by eugenol is mainly attributed to its anti-metastatic, anti-proliferative, anti-angiogenic, anti-inflammatory, cell cycle arrest, apoptotic, and autophagic effects. Hence, the use of eugenol alone or along with other chemotherapeutic anticancer agents is found to be very effective in cancer therapy.


Subject(s)
Antineoplastic Agents , Neoplasms , Oils, Volatile , Animals , Anti-Inflammatory Agents/pharmacology , Antineoplastic Agents/pharmacology , Antioxidants , Apoptotic Protease-Activating Factor 1 , Cyclin B , Cyclin D1 , Cytochromes c , Eugenol/pharmacology , Eugenol/therapeutic use , Neoplasms/drug therapy , Phenols , Proliferating Cell Nuclear Antigen , Proto-Oncogene Proteins c-bcl-2 , Tumor Suppressor Protein p53
4.
Antibodies (Basel) ; 10(2)2021 Apr 17.
Article in English | MEDLINE | ID: mdl-33920596

ABSTRACT

Lymphatic filariasis (LF) is a debilitating parasitic disease caused by filarial parasites and it is prevalent across the underprivileged population throughout the globe. The inadequate efficacy of the existing treatment options has provoked the conception of alternative strategies, among which immunotherapy is steadily emerging as a promising option. Herein, we demonstrate the efficacy of an antibody-based immunotherapeutic approach in an experimental model of filariasis, i.e., Wistar rat infected with Setaria cervi (a model filarial parasite). The polyclonal antibodies were raised against filarial surface antigen bestrophin protein (FSAg) in mice using the purified Wuchereria bancrofti FSAg. The adoptive transfer of anti-FSAg antibody-containing serum resulted in the significant reduction of parasite burden in filaria-infected rats. Intriguingly, anti-FSAg sera-treated animals also displayed a reduction in the level of proinflammatory cytokines as compared to the infected but untreated group. Furthermore, our in silico immunoinformatics data revealed eight B-cell epitopes and several T-cell epitopes in FSAg and these epitopes were linked to form a refined antigen in silico. The immune simulation suggested IgM and IgG1 as the predominant immunoglobulins induced in response to FSAg. Taken together, our experimental and simulation data collectively indicated a therapeutic potential of anti-FSAg sera against LF.

5.
PLoS One ; 13(12): e0208201, 2018.
Article in English | MEDLINE | ID: mdl-30521546

ABSTRACT

Development of antifilarial drug from the natural sources is considered as one of the most efficacious, safe, and affordable approaches. In this study, we report the antifilarial activity of a leguminous plant Cajanus scarabaeoides (L.) Thouars. The polyphenol-rich ethanolic extract obtained from the stem part of the plant C. scarabaeoides (EECs) was found to be efficient in killing the filarial nematode Setaria cervi in all the three developmental stages viz. oocytes, microfilariae (Mf) and adults with LD50 values of 2.5, 10 and 35 µg/ml, respectively. While studying the molecular mechanism of action, we found that induction of oxidative stress plays the key role in inducing the mortality in S. cervi. The redox imbalance finally results in activation of the nematode CED pathway that executes the death of the parasite. Intriguingly, EECs was found to be selectively active against the worm and absolutely non-toxic to the mammalian cells and tissues. Taken together, our experimental data demonstrate that C. scarabaeoides can be chosen as an affordable natural therapeutic for treating filarial infection in the future with high efficacy and less toxicity.


Subject(s)
Cajanus/chemistry , Filaricides/pharmacology , Plant Extracts/pharmacology , Setaria Nematode/drug effects , Animals , Apoptosis/drug effects , Cattle , Ethanol/chemistry , Female , Filaricides/chemistry , Filaricides/isolation & purification , Filaricides/therapeutic use , Lethal Dose 50 , Models, Animal , Oxidative Stress/drug effects , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Plant Extracts/therapeutic use , Plant Stems/chemistry , Polyphenols/isolation & purification , Polyphenols/pharmacology , Reactive Oxygen Species/metabolism , Setariasis/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL