Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Curr Protein Pept Sci ; 8(5): 439-45, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17979759

ABSTRACT

Structure-based drug design (SBDD) has played an integral role in the development of highly specific, potent protease inhibitors resulting in a number of drugs in clinical trials and on the market. Possessing biochemical assays and structural information on both the target protease and homologous family members helps ensure compound selectivity. We have redesigned the path from clone to protein eliminating many of the traditional bottlenecks associated with protein production to ensure a constant supply to feed many diverse protease drug discovery programs. The process was initiated with the design of a multi-system vector, capable of expression in both eukaryotic and prokaryotic hosts; this vector also facilitated high-throughput cloning, expression and purification. When combined into an expression screen, supplemented with salvage screens for detergent extraction and refolding, a route for protein production was established rapidly. Using this process-orientated approach we have successfully expressed and purified all mechanistic classes of active human and viral proteases for enzymatic assays and crystallization studies. While exploiting recent developments in high-throughput biochemistry, we still employ classical biophysical techniques such as light-scattering and analytical ultracentrifugation, to ensure the highest quality protein enters crystallization trials. We have drawn on examples from our own research programs to illustrate how these strategies have been successfully used in the production of proteases for SBDD.


Subject(s)
Drug Design , Peptide Hydrolases/chemistry , Animals , Humans , Models, Molecular , Peptide Hydrolases/biosynthesis , Peptide Hydrolases/genetics , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Protein Binding , Protein Folding , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification
2.
Biochim Biophys Acta ; 1594(1): 27-39, 2002 Jan 31.
Article in English | MEDLINE | ID: mdl-11825606

ABSTRACT

The oxidation of IMP to XMP is the rate-limiting step in the de novo synthesis of guanine ribonucleotides. This NAD-dependent reaction is catalyzed by the enzyme inosine monophosphate dehydrogenase (IMPDH). Based upon the recent structural determination of IMPDH complexed to oxidized IMP (XMP*) and the potent uncompetitive inhibitor mycophenolic acid (MPA), we have selected active site residues and prepared mutants of human type II IMPDH. The catalytic parameters of these mutants were determined. Mutations G326A, D364A, and the active site nucleophile C331A all abolish enzyme activity to less than 0.1% of wild type. These residues line the IMP binding pocket and are necessary for correct positioning of the substrate, Asp364 serving to anchor the ribose ring of the nucleotide. In the MPA/NAD binding site, significant loss of activity was seen by mutation of any residue of the triad Arg322, Asn303, Asp274 which form a hydrogen bonding network lining one side of this pocket. From a model of NAD bound to the active site consistent with the mutational data, we propose that these resides are important in binding the ribose ring of the nicotinamide substrate. Additionally, mutations in the pair Thr333, Gln441, which lies close to the xanthine ring, cause a significant drop in the catalytic activity of IMPDH. It is proposed that these residues serve to deliver the catalytic water molecule required for hydrolysis of the cysteine-bound XMP* intermediate formed after oxidation by NAD.


Subject(s)
IMP Dehydrogenase/genetics , Binding Sites , Catalysis , Hydrolysis , IMP Dehydrogenase/chemistry , Inosine Monophosphate/chemistry , Models, Molecular , Molecular Structure , Mutagenesis, Site-Directed , NAD/chemistry , Ribonucleotides/chemistry , Xanthine
3.
J Med Chem ; 58(18): 7195-216, 2015 Sep 24.
Article in English | MEDLINE | ID: mdl-26230873

ABSTRACT

While several therapeutic options exist, the need for more effective, safe, and convenient treatment for a variety of autoimmune diseases persists. Targeting the Janus tyrosine kinases (JAKs), which play essential roles in cell signaling responses and can contribute to aberrant immune function associated with disease, has emerged as a novel and attractive approach for the development of new autoimmune disease therapies. We screened our compound library against JAK3, a key signaling kinase in immune cells, and identified multiple scaffolds showing good inhibitory activity for this kinase. A particular scaffold of interest, the 1H-pyrrolo[2,3-b]pyridine series (7-azaindoles), was selected for further optimization in part on the basis of binding affinity (Ki) as well as on the basis of cellular potency. Optimization of this chemical series led to the identification of VX-509 (decernotinib), a novel, potent, and selective JAK3 inhibitor, which demonstrates good efficacy in vivo in the rat host versus graft model (HvG). On the basis of these findings, it appears that VX-509 offers potential for the treatment of a variety of autoimmune diseases.


Subject(s)
Autoimmune Diseases/drug therapy , Heterocyclic Compounds, 2-Ring/chemistry , Janus Kinase 3/antagonists & inhibitors , Valine/analogs & derivatives , Animals , Cell Line , Databases, Chemical , Dogs , Female , Graft vs Host Disease/drug therapy , Graft vs Host Disease/immunology , Haplorhini , Heterocyclic Compounds, 2-Ring/pharmacokinetics , Heterocyclic Compounds, 2-Ring/pharmacology , Humans , Janus Kinase 2/chemistry , Janus Kinase 3/chemistry , Male , Mice , Mice, Inbred BALB C , Mice, Inbred CBA , Microsomes, Liver/metabolism , Models, Molecular , Rats , Rats, Inbred Lew , Rats, Sprague-Dawley , Stereoisomerism , Structure-Activity Relationship , Valine/chemistry , Valine/pharmacokinetics , Valine/pharmacology
4.
Biochemistry ; 45(25): 7913-23, 2006 Jun 27.
Article in English | MEDLINE | ID: mdl-16784244

ABSTRACT

Rho-associated coiled-coil kinase, ROCK, is implicated in Rho-mediated cell adhesion and smooth muscle contraction. Animal models suggest that the inhibition of ROCK can ameliorate conditions, such as vasospasm, hypertension, and inflammation. As part of our effort to design novel inhibitors of ROCK, we investigated the kinetic mechanism of ROCK I. Steady-state bisubstrate kinetics, inhibition kinetics, isotope partition analysis, viscosity effects, and presteady-state kinetics were used to explore the kinetic mechanism. Plots of reciprocals of initial rates obtained in the presence of nonhydrolyzable ATP analogues and the small molecule inhibitor of ROCK, Y-27632, against the reciprocals of the peptide concentrations yielded parallel lines (uncompetitive pattern). This pattern is indicative of an ordered binding mechanism, with the peptide adding first. The staurosporine analogue K252a, however, gave a noncompetitive pattern. When a pulse of (33)P-gamma-ATP mixed with ROCK was chased with excess unlabeled ATP and peptide, 0.66 enzyme equivalent of (33)P-phosphate was incorporated into the product in the first turnover. The presence of ATPase activity coupled with the isotope partition data is a clear evidence for the existence of a viable [E-ATP] complex in the kinase reaction and implicates a random binding mechanism. The k(cat)/K(m) parameters were fully sensitive to viscosity (viscosity effects of 1.4 +/- 0.2 and 0.9 +/- 0.3 for ATP and peptide 5, respectively), and therefore, the barriers to dissociation of either substrate are higher than the barrier for the phosphoryl transfer step. As a consequence, not all the binding steps are at fast equilibrium. The observation of a burst in presteady-state kinetics (k(b) = 10.2 +/- 2.1 s(-)(1)) and the viscosity effect on k(cat) of 1.3 +/- 0.2 characterize the phosphoryl transfer step to be fast and the release of product and/or the enzyme isomerization step accompanying it as rate-limiting at V(max) conditions. From the multiple kinetic studies, most of the rate constants for the individual steps were either evaluated or estimated.


Subject(s)
Protein Serine-Threonine Kinases/metabolism , Adenosine Triphosphatases/metabolism , Amides/pharmacology , Carbazoles/pharmacology , Humans , Indole Alkaloids , Intracellular Signaling Peptides and Proteins , Kinetics , Phosphorylation , Protein Conformation/drug effects , Protein Serine-Threonine Kinases/antagonists & inhibitors , Pyridines/pharmacology , Solvents , Substrate Specificity , Viscosity , rho-Associated Kinases
5.
Antimicrob Agents Chemother ; 47(3): 1037-46, 2003 Mar.
Article in English | MEDLINE | ID: mdl-12604539

ABSTRACT

DNA gyrase is a bacterial type II topoisomerase which couples the free energy of ATP hydrolysis to the introduction of negative supercoils into DNA. Amino acids in proximity to bound nonhydrolyzable ATP analog (AMP. PNP) or novobiocin in the gyrase B (GyrB) subunit crystal structures were examined for their roles in enzyme function and novobiocin resistance by site-directed mutagenesis. Purified Escherichia coli GyrB mutant proteins were complexed with the gyrase A subunit to form the functional A(2)B(2) gyrase enzyme. Mutant proteins with alanine substitutions at residues E42, N46, E50, D73, R76, G77, and I78 had reduced or no detectable ATPase activity, indicating a role for these residues in ATP hydrolysis. Interestingly, GyrB proteins with P79A and K103A substitutions retained significant levels of ATPase activity yet demonstrated no DNA supercoiling activity, even with 40-fold more enzyme than the wild-type enzyme, suggesting that these amino acid side chains have a role in the coupling of the two activities. All enzymes relaxed supercoiled DNA to the same extent as the wild-type enzyme did, implying that only ATP-dependent reactions were affected. Mutant genes were examined in vivo for their abilities to complement a temperature-sensitive E. coli gyrB mutant, and the activities correlated well with the in vitro activities. We show that the known R136 novobiocin resistance mutations bestow a significant loss of inhibitor potency in the ATPase assay. Four new residues (D73, G77, I78, and T165) that, when changed to the appropriate amino acid, result in both significant levels of novobiocin resistance and maintain in vivo function were identified in E. coli.


Subject(s)
Adenosine Triphosphate/metabolism , Amino Acid Substitution/genetics , Anti-Bacterial Agents/pharmacology , DNA Gyrase/metabolism , DNA, Superhelical/metabolism , Escherichia coli/enzymology , Novobiocin/pharmacology , Adenosine Triphosphatases/metabolism , Alleles , Binding Sites , Cloning, Molecular , DNA Gyrase/genetics , DNA, Superhelical/genetics , Drug Resistance, Bacterial , Escherichia coli/drug effects , Escherichia coli/genetics , Hydrolysis , Kinetics , Models, Molecular , Mutagenesis, Site-Directed , Recombinant Proteins/biosynthesis , Recombinant Proteins/isolation & purification , Structure-Activity Relationship , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL