Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Nat Methods ; 17(12): 1191-1199, 2020 12.
Article in English | MEDLINE | ID: mdl-33230324

ABSTRACT

Probing epigenetic features on DNA has tremendous potential to advance our understanding of the phased epigenome. In this study, we use nanopore sequencing to evaluate CpG methylation and chromatin accessibility simultaneously on long strands of DNA by applying GpC methyltransferase to exogenously label open chromatin. We performed nanopore sequencing of nucleosome occupancy and methylome (nanoNOMe) on four human cell lines (GM12878, MCF-10A, MCF-7 and MDA-MB-231). The single-molecule resolution allows footprinting of protein and nucleosome binding, and determination of the combinatorial promoter epigenetic signature on individual molecules. Long-read sequencing makes it possible to robustly assign reads to haplotypes, allowing us to generate a fully phased human epigenome, consisting of chromosome-level allele-specific profiles of CpG methylation and chromatin accessibility. We further apply this to a breast cancer model to evaluate differential methylation and accessibility between cancerous and noncancerous cells.


Subject(s)
Breast Neoplasms/genetics , Chromatin/genetics , DNA Methylation/genetics , Nanopore Sequencing/methods , Cell Line, Tumor , CpG Islands/genetics , DNA/metabolism , Epigenome/genetics , Female , Genome, Human/genetics , Humans , MCF-7 Cells , Methyltransferases/metabolism , Promoter Regions, Genetic/genetics , Sequence Analysis, DNA
3.
Nat Methods ; 16(12): 1297-1305, 2019 12.
Article in English | MEDLINE | ID: mdl-31740818

ABSTRACT

High-throughput complementary DNA sequencing technologies have advanced our understanding of transcriptome complexity and regulation. However, these methods lose information contained in biological RNA because the copied reads are often short and modifications are not retained. We address these limitations using a native poly(A) RNA sequencing strategy developed by Oxford Nanopore Technologies. Our study generated 9.9 million aligned sequence reads for the human cell line GM12878, using thirty MinION flow cells at six institutions. These native RNA reads had a median length of 771 bases, and a maximum aligned length of over 21,000 bases. Mitochondrial poly(A) reads provided an internal measure of read-length quality. We combined these long nanopore reads with higher accuracy short-reads and annotated GM12878 promoter regions to identify 33,984 plausible RNA isoforms. We describe strategies for assessing 3' poly(A) tail length, base modifications and transcript haplotypes.


Subject(s)
Nanopore Sequencing/methods , Poly A/genetics , Sequence Analysis, RNA/methods , Transcriptome , Cells, Cultured , Humans
4.
bioRxiv ; 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38496646

ABSTRACT

Nanopore signal analysis enables detection of nucleotide modifications from native DNA and RNA sequencing, providing both accurate genetic/transcriptomic and epigenetic information without additional library preparation. Presently, only a limited set of modifications can be directly basecalled (e.g. 5-methylcytosine), while most others require exploratory methods that often begin with alignment of nanopore signal to a nucleotide reference. We present Uncalled4, a toolkit for nanopore signal alignment, analysis, and visualization. Uncalled4 features an efficient banded signal alignment algorithm, BAM signal alignment file format, statistics for comparing signal alignment methods, and a reproducible de novo training method for k-mer-based pore models, revealing potential errors in ONT's state-of-the-art DNA model. We apply Uncalled4 to RNA 6-methyladenine (m6A) detection in seven human cell lines, identifying 26% more modifications than Nanopolish using m6Anet, including in several genes where m6A has known implications in cancer. Uncalled4 is available open-source at github.com/skovaka/uncalled4.

5.
Cell Genom ; 2(2)2022 Feb 09.
Article in English | MEDLINE | ID: mdl-35252946

ABSTRACT

Modifications are present on many classes of RNA, including tRNA, rRNA, and mRNA. These modifications modulate diverse biological processes such as genetic recoding and mRNA export and folding. In addition, modifications can be introduced to RNA molecules using chemical probing strategies that reveal RNA structure and dynamics. Many methods exist to detect RNA modifications by short-read sequencing; however, limitations on read length inherent to short-read-based methods dissociate modifications from their native context, preventing single-molecule modification analysis. Here, we demonstrate direct RNA nanopore sequencing to detect endogenous and exogenous RNA modifications on long RNAs at the single-molecule level. We detect endogenous 2'-O-methyl and base modifications across E. coli and S. cerevisiae ribosomal RNAs as shifts in current signal and dwell times distally through interactions with the helicase motor protein. We further use the 2'-hydroxyl reactive SHAPE reagent acetylimidazole to probe RNA structure at the single-molecule level with readout by direct nanopore sequencing.

6.
Sci Adv ; 8(25): eabn3471, 2022 06 24.
Article in English | MEDLINE | ID: mdl-35731869

ABSTRACT

Temozolomide (TMZ) is a chemotherapeutic agent that has been the first-line standard of care for the aggressive brain cancer glioblastoma (GBM) since 2005. Although initially beneficial, TMZ resistance is universal and second-line interventions are an unmet clinical need. Here, we took advantage of the known mechanism of action of TMZ to target guanines (G) and investigated G-rich G-quadruplex (G4) and splice site changes that occur upon TMZ resistance. We report that TMZ-resistant GBM has guanine mutations that disrupt the G-rich DNA G4s and splice sites that lead to deregulated alternative splicing. These alterations create vulnerabilities, which are selectively targeted by either the G4-stabilizing drug TMPyP4 or a novel splicing kinase inhibitor of cdc2-like kinase. Last, we show that the G4 and RNA binding protein EWSR1 aggregates in the cytoplasm in TMZ-resistant GBM cells and patient samples. Together, our findings provide insight into targetable vulnerabilities of TMZ-resistant GBM and present cytoplasmic EWSR1 as a putative biomarker.


Subject(s)
Antineoplastic Agents , Brain Neoplasms , Glioblastoma , Antineoplastic Agents/pharmacology , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Cell Line, Tumor , DNA/pharmacology , Drug Resistance, Neoplasm/genetics , Glioblastoma/metabolism , Guanine/pharmacology , Humans , Mutation , RNA , Temozolomide/pharmacology , Temozolomide/therapeutic use
7.
Science ; 376(6588): eabj5089, 2022 04.
Article in English | MEDLINE | ID: mdl-35357915

ABSTRACT

The completion of a telomere-to-telomere human reference genome, T2T-CHM13, has resolved complex regions of the genome, including repetitive and homologous regions. Here, we present a high-resolution epigenetic study of previously unresolved sequences, representing entire acrocentric chromosome short arms, gene family expansions, and a diverse collection of repeat classes. This resource precisely maps CpG methylation (32.28 million CpGs), DNA accessibility, and short-read datasets (166,058 previously unresolved chromatin immunoprecipitation sequencing peaks) to provide evidence of activity across previously unidentified or corrected genes and reveals clinically relevant paralog-specific regulation. Probing CpG methylation across human centromeres from six diverse individuals generated an estimate of variability in kinetochore localization. This analysis provides a framework with which to investigate the most elusive regions of the human genome, granting insights into epigenetic regulation.


Subject(s)
CpG Islands , DNA Methylation , Epigenesis, Genetic , Genome, Human , Centromere/genetics , Centromere/metabolism , Disease/genetics , Genetic Loci , Genomics/standards , Humans , Reference Standards , Sequence Analysis, DNA
8.
G3 (Bethesda) ; 11(1)2021 01 18.
Article in English | MEDLINE | ID: mdl-33561252

ABSTRACT

The tobacco hornworm, Manduca sexta, is a lepidopteran insect that is used extensively as a model system for studying insect biology, development, neuroscience, and immunity. However, current studies rely on the highly fragmented reference genome Msex_1.0, which was created using now-outdated technologies and is hindered by a variety of deficiencies and inaccuracies. We present a new reference genome for M. sexta, JHU_Msex_v1.0, applying a combination of modern technologies in a de novo assembly to increase continuity, accuracy, and completeness. The assembly is 470 Mb and is ∼20× more continuous than the original assembly, with scaffold N50 > 14 Mb. We annotated the assembly by lifting over existing annotations and supplementing with additional supporting RNA-based data for a total of 25,256 genes. The new reference assembly is accessible in annotated form for public use. We demonstrate that improved continuity of the M. sexta genome improves resequencing studies and benefits future research on M. sexta as a model organism.


Subject(s)
Manduca , Moths , Animals , Genome , Manduca/genetics
9.
Nat Commun ; 12(1): 6909, 2021 11 25.
Article in English | MEDLINE | ID: mdl-34824209

ABSTRACT

There is an urgent need for innovative methods to reduce transmission of bloodborne pathogens like HIV and HCV among people who inject drugs (PWID). We investigate if PWID who acquire non-pathogenic bloodborne viruses like anelloviruses and pegiviruses might be at greater risk of acquiring a bloodborne pathogen. PWID who later acquire HCV accumulate more non-pathogenic viruses in plasma than matched controls who do not acquire HCV infection. Additionally, phylogenetic analysis of those non-pathogenic virus sequences reveals drug use networks. Here we find first in Baltimore and confirm in San Francisco that the accumulation of non-pathogenic viruses in PWID is a harbinger for subsequent acquisition of pathogenic viruses, knowledge that may guide the prioritization of the public health resources to combat HIV and HCV.


Subject(s)
Blood-Borne Infections , Plasma , Substance-Related Disorders , Virome , Adult , Amino Acid Sequence , Anelloviridae , Blood-Borne Pathogens , Female , Hepatitis C/epidemiology , Humans , Knowledge , Male , Metagenomics , Phylogeny , Public Health , Young Adult
10.
Genome Biol ; 20(1): 278, 2019 12 16.
Article in English | MEDLINE | ID: mdl-31842956

ABSTRACT

RNA sequencing using the latest single-molecule sequencing instruments produces reads that are thousands of nucleotides long. The ability to assemble these long reads can greatly improve the sensitivity of long-read analyses. Here we present StringTie2, a reference-guided transcriptome assembler that works with both short and long reads. StringTie2 includes new methods to handle the high error rate of long reads and offers the ability to work with full-length super-reads assembled from short reads, which further improves the quality of short-read assemblies. StringTie2 is more accurate and faster and uses less memory than all comparable short-read and long-read analysis tools.


Subject(s)
Genetic Techniques , Genomics/methods , Transcriptome , Animals , Arabidopsis , Humans , Sequence Analysis, RNA , Software , Zea mays
SELECTION OF CITATIONS
SEARCH DETAIL