Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Plant Dis ; 105(6): 1596-1601, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33320046

ABSTRACT

Maize chlorotic mottle virus (MCMV) has driven the emergence of maize lethal necrosis worldwide, where it threatens maize production in areas of East Africa, South America, and Asia. It is thought that MCMV transmission through seed may be important for introduction of the virus in new regions. Identification of infested seed lots is critical for preventing the spread of MCMV through seed. Although methods for detecting MCMV in leaf tissue are available, diagnostic methods for its detection in seed lots are lacking. In this study, ELISA, RT-PCR, and RT-qPCR were adapted for detection of MCMV in maize seed. Purified virions of MCMV isolates from Kansas, Mexico, and Kenya were then used to determine the virus detection thresholds for each diagnostic assay. No substantial differences in response were detected among the isolates in any of the three assays. The RT-PCR and a SYBR Green-based RT-qPCR assays were >3,000 times more sensitive than commercial ELISA for MCMV detection. For ELISA using seed extracts, selection of positive and negative controls was critical, most likely because of relatively high backgrounds. Use of seed soak solutions in ELISA detected MCMV with similar sensitivity to seed extracts, produced minimal background, and required substantially less labor. ELISA and RT-PCR were both effective for detecting MCMV in seed lots from Hawaii and Kenya, with ELISA providing a reliable and inexpensive diagnostic assay that could be implemented routinely in seed testing facilities.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Subject(s)
Plant Diseases , Tombusviridae , Kenya , Seeds
2.
Virus Genes ; 54(3): 432-437, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29687187

ABSTRACT

Since 2011-2012, Maize lethal necrosis (MLN) has emerged in East Africa, causing massive yield loss and propelling research to identify viruses and virus populations present in maize. As expected, next generation sequencing (NGS) has revealed diverse and abundant viruses from the family Potyviridae, primarily sugarcane mosaic virus (SCMV), and maize chlorotic mottle virus (MCMV) (Tombusviridae), which are known to cause MLN by synergistic co-infection. In addition to these expected viruses, we identified a virus in the genus Polerovirus (family Luteoviridae) in 104/172 samples selected for MLN or other potential virus symptoms from Kenya, Uganda, Rwanda, and Tanzania. This polerovirus (MF974579) nucleotide sequence is 97% identical to maize-associated viruses recently reported in China, termed 'maize yellow mosaic virus' (MaYMV) and maize yellow dwarf virus (MaYMV; KU291101, KU291107, MYDV-RMV2; KT992824); and 99% identical to MaYMV (KY684356) infecting sugarcane and itch grass in Nigeria; 83% identical to a barley-associated polerovirus recently identified in Korea (BVG; KT962089); and 79% identical to the U.S. maize-infecting polerovirus maize yellow dwarf virus (MYDV-RMV; KT992824). Nucleotide sequences from ORF0 of 20 individual East African isolates collected from Kenya, Uganda, Rwanda, and Tanzania shared 98% or higher identity, and were detected in 104/172 (60.5%) of samples collected for virus-like symptoms, indicating extensive prevalence but limited diversity of this virus in East Africa. We refer to this virus as "MYDV-like polerovirus" until symptoms of the virus in maize are known.


Subject(s)
Luteoviridae/genetics , Zea mays/virology , Africa, Eastern , Genetic Variation , Genome, Viral , Luteoviridae/isolation & purification , RNA, Viral , Sequence Analysis, RNA
3.
Phytopathology ; 108(6): 748-758, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29287150

ABSTRACT

The recent rapid emergence of maize lethal necrosis (MLN), caused by coinfection of maize with Maize chlorotic mottle virus (MCMV) and a second virus usually from the family Potyviridae, is causing extensive losses for farmers in East Africa, Southeast Asia, and South America. Although the genetic basis of resistance to potyviruses is well understood in maize, little was known about resistance to MCMV. The responses of five maize inbred lines (KS23-5, KS23-6, N211, DR, and Oh1VI) to inoculation with MCMV, Sugarcane mosaic virus, and MLN were characterized. All five lines developed fewer symptoms than susceptible controls after inoculation with MCMV; however, the virus was detected in systemic leaf tissue from each of the lines similarly to susceptible controls, indicating that the lines were tolerant of MCMV rather than resistant to it. Except for KS23-5, the inbred lines also developed fewer symptoms after inoculation with MLN than susceptible controls. To identify genetic loci associated with MCMV tolerance, large F2 or recombinant inbred populations were evaluated for their phenotypic responses to MCMV, and the most resistant and susceptible plants were genotyped by sequencing. One to four quantitative trait loci (QTL) were identified in each tolerant population using recombination frequency and positional mapping strategies. In contrast to previous studies of virus resistance in maize, the chromosomal positions and genetic character of the QTL were unique to each population. The results suggest that different, genotype-specific mechanisms are associated with MCMV tolerance in maize. These results will allow for the development of markers for marker-assisted selection of MCMV- and MLN-tolerant maize hybrids for disease control.


Subject(s)
Chromosomes, Plant/genetics , Gammaherpesvirinae , Plant Diseases/genetics , Plant Diseases/virology , Quantitative Trait Loci/genetics , Zea mays/genetics , Chromosome Mapping , Genetic Predisposition to Disease , Genotype
4.
Phytopathology ; 107(10): 1095-1108, 2017 10.
Article in English | MEDLINE | ID: mdl-28535127

ABSTRACT

Maize lethal necrosis (MLN) has emerged as a serious threat to food security in sub-Saharan Africa. MLN is caused by coinfection with two viruses, Maize chlorotic mottle virus and a potyvirus, often Sugarcane mosaic virus. To better understand the dynamics of MLN and to provide insight into disease management, we modeled the spread of the viruses causing MLN within and between growing seasons. The model allows for transmission via vectors, soil, and seed, as well as exogenous sources of infection. Following model parameterization, we predict how management affects disease prevalence and crop performance over multiple seasons. Resource-rich farmers with large holdings can achieve good control by combining clean seed and insect control. However, crop rotation is often required to effect full control. Resource-poor farmers with smaller holdings must rely on rotation and roguing, and achieve more limited control. For both types of farmer, unless management is synchronized over large areas, exogenous sources of infection can thwart control. As well as providing practical guidance, our modeling framework is potentially informative for other cropping systems in which coinfection has devastating effects. Our work also emphasizes how mathematical modeling can inform management of an emerging disease even when epidemiological information remains scanty. [Formula: see text] Copyright © 2017 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .


Subject(s)
Models, Theoretical , Plant Diseases/prevention & control , Potyvirus/isolation & purification , Tombusviridae/isolation & purification , Zea mays/virology , Agriculture , Coinfection , Insect Control , Kenya , Plant Diseases/statistics & numerical data , Plant Diseases/virology , Seeds/virology
5.
Plant Dis ; 101(8): 1455-1462, 2017 Aug.
Article in English | MEDLINE | ID: mdl-30678589

ABSTRACT

Maize lethal necrosis (MLN), a severe virus disease of maize, has emerged in East Africa in recent years with devastating effects on production and food security where maize is a staple subsistence crop. In extensive surveys of MLN-symptomatic plants in East Africa, sequences of Johnsongrass mosaic virus (JGMV) were identified in Uganda, Kenya, Rwanda, and Tanzania. The East African JGMV is distinct from previously reported isolates and infects maize, sorghum, and Johnsongrass but not wheat or oat. This isolate causes MLN in coinfection with Maize chlorotic mottle virus (MCMV), as reported for other potyviruses, and was present in MLN-symptomatic plants in which the major East African potyvirus, Sugarcane mosaic virus (SCMV), was not detected. Virus titers were compared in single and coinfections by quantitative reverse transcription-polymerase chain reaction. MCMV titer increased in coinfected plants whereas SCMV, Maize dwarf mosaic virus, and JGMV titers were unchanged compared with single infections at 11 days postinoculation. Together, these results demonstrate the presence of an East African JGMV that contributes to MLN in the region.


Subject(s)
Potyvirus , Zea mays , Africa, Eastern , Plant Diseases/virology , Polymerase Chain Reaction , Potyvirus/genetics , Potyvirus/physiology , Zea mays/virology
6.
J Econ Entomol ; 109(1): 426-33, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26578627

ABSTRACT

Host plant resistance to the soybean aphid, Aphis glycines Matsumura, is an effective means of controlling populations of this introduced pest species in the United States. Rag (Resistance to Aphis glycines) genes identified in soybean germplasm have been incorporated into commercial cultivars, but differential responses by soybean aphid biotypes to the Rag genes have made understanding mechanisms underlying resistance associated with Rag genes increasingly important. We compared the behavior of biotype 2 aphids on the resistant soybean line PI243540, which is a source of Rag2, and the susceptible cultivar Wyandot. Scanning electron microscopy revealed that the abaxial surface of leaves from resistant plants had a higher density of both long and glandulartrichomes, which might repel aphids, on veins. Time-lapse animation also suggested a repellent effect of resistant plants on aphids. However, electropenatography (EPG) indicated that the time to first probe did not differ between aphids feeding on the resistant and susceptible lines. EPG also indicated that fewer aphids feeding on resistant plants reached the phloem, and the time before reaching the phloem was much longer relative to susceptible soybean. For aphids that reached the phloem, there was no difference in either number of feedings or their duration in phloem. However, aphids feeding on resistant soybean had fewer prolonged phases of active salivation (E1) and many more pathway activities and non-probing intervals. Together, the feeding behavior of aphids suggested that Rag2 resistance has strong antixenosis effects, in addition to previously reported antibiosis, and was associated with epidermal and mesophyll tissues.


Subject(s)
Antibiosis , Aphids/physiology , Glycine max/physiology , Animals , Aphids/growth & development , Feeding Behavior , Microscopy, Electron, Scanning , Plant Leaves/ultrastructure , Glycine max/genetics , Video Recording
7.
J Virol ; 88(6): 3213-22, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24390330

ABSTRACT

UNLABELLED: Bean pod mottle virus (BPMV) is a bipartite, positive-sense (+) RNA plant virus in the Secoviridae family. Its RNA1 encodes proteins required for genome replication, whereas RNA2 primarily encodes proteins needed for virion assembly and cell-to-cell movement. However, the function of a 58-kDa protein (P58) encoded by RNA2 has not been resolved. P58 and the movement protein (MP) of BPMV are two largely identical proteins differing only at their N termini, with P58 extending MP upstream by 102 amino acid residues. In this report, we unveil a unique role for P58. We show that BPMV RNA2 accumulation in infected cells was abolished when the start codon of P58 was eliminated. The role of P58 does not require the region shared by MP, as RNA2 accumulation in individual cells remained robust even when most of the MP coding sequence was removed. Importantly, the function of P58 required the P58 protein, rather than its coding RNA, as compensatory mutants could be isolated that restored RNA2 accumulation by acquiring new start codons upstream of the original one. Most strikingly, loss of P58 function could not be complemented by P58 provided in trans, suggesting that P58 functions in cis to selectively promote the accumulation of RNA2 copies that encode a functional P58 protein. Finally, we found that all RNA1-encoded proteins are cis-acting relative to RNA1. Together, our results suggest that P58 probably functions by recruiting the RNA1-encoded polyprotein to RNA2 to enable RNA2 reproduction. IMPORTANCE: Bean pod mottle virus (BPMV) is one of the most important pathogens of the crop plant soybean, yet its replication mechanism is not well understood, hindering the development of knowledge-based control measures. The current study examined the replication strategy of BPMV RNA2, one of the two genomic RNA segments of this virus, and established an essential role for P58, one of the RNA2-encoded proteins, in the process of RNA2 replication. Our study demonstrates for the first time that P58 functions preferentially with the very RNA from which it is translated, thus greatly advancing our understanding of the replication mechanisms of this and related viruses. Furthermore, this study is important because it provides a potential target for BPMV-specific control, and hence could help to mitigate soybean production losses caused by this virus.


Subject(s)
Comovirus/metabolism , RNA, Viral/metabolism , Viral Proteins/metabolism , Comovirus/chemistry , Comovirus/genetics , Molecular Weight , Plant Diseases/virology , RNA, Viral/genetics , Glycine max/virology , Viral Proteins/chemistry , Viral Proteins/genetics
8.
Insect Mol Biol ; 24(4): 422-31, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25845267

ABSTRACT

Vertically transmitted bacterial symbionts are common in arthropods. Aphids undergo an obligate symbiosis with Buchnera aphidicola, which provides essential amino acids to its host and contributes directly to nymph growth and reproduction. We previously found that newly adult Aphis glycines feeding on soybean infected with the beetle-transmitted Bean pod mottle virus (BPMV) had significantly reduced fecundity. We hypothesized that the reduced fecundity was attributable to detrimental impacts of the virus on the aphid microbiome, namely Buchnera. To test this, mRNA sequencing and quantitative real-time PCR were used to assay Buchnera transcript abundance and titre in A. glycines feeding on Soybean mosaic virus-infected, BPMV-infected, and healthy soybean for up to 14 days. Our results indicated that Buchnera density was lower and ultimately suppressed in aphids feeding on virus-infected soybean. While the decreased Buchnera titre may be associated with reduced aphid fecundity, additional mechanisms are probably involved. The present report begins to describe how interactions among insects, plants, and plant pathogens influence endosymbiont population dynamics.


Subject(s)
Aphids/microbiology , Buchnera/virology , Comovirus/physiology , Glycine max/virology , Mosaic Viruses , Animals , Buchnera/genetics , Fertility , Genes, Bacterial , Host-Pathogen Interactions , Plant Diseases/virology , Population Dynamics , Glycine max/parasitology , Symbiosis , Transcriptome
9.
Phytopathology ; 105(7): 956-65, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25822185

ABSTRACT

In sub-Saharan Africa, maize is a staple food and key determinant of food security for smallholder farming communities. Pest and disease outbreaks are key constraints to maize productivity. In September 2011, a serious disease outbreak, later diagnosed as maize lethal necrosis (MLN), was reported on maize in Kenya. The disease has since been confirmed in Rwanda and the Democratic Republic of Congo, and similar symptoms have been reported in Tanzania, Uganda, South Sudan, and Ethiopia. In 2012, yield losses of up to 90% resulted in an estimated grain loss of 126,000 metric tons valued at $52 million in Kenya alone. In eastern Africa, MLN was found to result from coinfection of maize with Maize chlorotic mottle virus (MCMV) and Sugarcane mosaic virus (SCMV), although MCMV alone appears to cause significant crop losses. We summarize here the results of collaborative research undertaken to understand the biology and epidemiology of MLN in East Africa and to develop disease management strategies, including identification of MLN-tolerant maize germplasm. We discuss recent progress, identify major issues requiring further research, and discuss the possible next steps for effective management of MLN.


Subject(s)
Potyviridae/physiology , Tombusviridae/physiology , Zea mays/virology , Africa South of the Sahara , Food Supply , Host-Pathogen Interactions , Pest Control , Plant Diseases/virology
10.
BMC Genomics ; 15: 133, 2014 Feb 14.
Article in English | MEDLINE | ID: mdl-24524215

ABSTRACT

BACKGROUND: Insects are the most important epidemiological factors for plant virus disease spread, with >75% of viruses being dependent on insects for transmission to new hosts. The black-faced leafhopper (Graminella nigrifrons Forbes) transmits two viruses that use different strategies for transmission: Maize chlorotic dwarf virus (MCDV) which is semi-persistently transmitted and Maize fine streak virus (MFSV) which is persistently and propagatively transmitted. To date, little is known regarding the molecular and cellular mechanisms in insects that regulate the process and efficiency of transmission, or how these mechanisms differ based on virus transmission strategy. RESULTS: RNA-Seq was used to examine transcript changes in leafhoppers after feeding on MCDV-infected, MFSV-infected and healthy maize for 4 h and 7 d. After sequencing cDNA libraries constructed from whole individuals using Illumina next generation sequencing, the Rnnotator pipeline in Galaxy was used to reassemble the G. nigrifrons transcriptome. Using differential expression analyses, we identified significant changes in transcript abundance in G. nigrifrons. In particular, transcripts implicated in the innate immune response and energy production were more highly expressed in insects fed on virus-infected maize. Leafhoppers fed on MFSV-infected maize also showed an induction of transcripts involved in hemocoel and cell-membrane linked immune responses within four hours of feeding. Patterns of transcript expression were validated for a subset of transcripts by quantitative real-time reverse transcription polymerase chain reaction using RNA samples collected from insects fed on healthy or virus-infected maize for between a 4 h and seven week period. CONCLUSIONS: We expected, and found, changes in transcript expression in G. nigrifrons feeding of maize infected with a virus (MFSV) that also infects the leafhopper, including induction of immune responses in the hemocoel and at the cell membrane. The significant induction of the innate immune system in G. nigrifrons fed on a foregut-borne virus (MCDV) that does not infect leafhoppers was less expected. The changes in transcript accumulation that occur independent of the mode of pathogen transmission could be key for identifying insect factors that disrupt vector-mediated plant virus transmission.


Subject(s)
Hemiptera/genetics , Hemiptera/virology , Maize streak virus/physiology , Transcriptome , Waikavirus/physiology , Zea mays/virology , Animals , Energy Metabolism/genetics , Gene Library , High-Throughput Nucleotide Sequencing , Immunity, Innate/genetics , Insect Vectors/genetics , Time Factors , Up-Regulation
11.
Theor Appl Genet ; 127(4): 867-80, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24500307

ABSTRACT

KEY MESSAGE: Novel and previously known resistance loci for six phylogenetically diverse viruses were tightly clustered on chromosomes 2, 3, 6 and 10 in the multiply virus-resistant maize inbred line, Oh1VI. Virus diseases in maize can cause severe yield reductions that threaten crop production and food supplies in some regions of the world. Genetic resistance to different viruses has been characterized in maize populations in diverse environments using different screening techniques, and resistance loci have been mapped to all maize chromosomes. The maize inbred line, Oh1VI, is resistant to at least ten viruses, including viruses in five different families. To determine the genes and inheritance mechanisms responsible for the multiple virus resistance in this line, F1 hybrids, F2 progeny and a recombinant inbred line (RIL) population derived from a cross of Oh1VI and the virus-susceptible inbred line Oh28 were evaluated. Progeny were screened for their responses to Maize dwarf mosaic virus, Sugarcane mosaic virus, Wheat streak mosaic virus, Maize chlorotic dwarf virus, Maize fine streak virus, and Maize mosaic virus. Depending on the virus, dominant, recessive, or additive gene effects were responsible for the resistance observed in F1 plants. One to three gene models explained the observed segregation of resistance in the F2 generation for all six viruses. Composite interval mapping in the RIL population identified 17 resistance QTLs associated with the six viruses. Of these, 15 were clustered in specific regions of chr. 2, 3, 6, and 10. It is unknown whether these QTL clusters contain single or multiple virus resistance genes, but the coupling phase linkage of genes conferring resistance to multiple virus diseases in this population could facilitate breeding efforts to develop multi-virus resistant crops.


Subject(s)
Disease Resistance/genetics , Inbreeding , Plant Diseases/genetics , Plant Diseases/virology , Plant Viruses/physiology , Zea mays/genetics , Zea mays/virology , Chromosome Mapping , Crosses, Genetic , Disease Progression , Inheritance Patterns/genetics , Phenotype , Plant Diseases/immunology , Quantitative Trait Loci/genetics , Recombination, Genetic/genetics
12.
Plant Dis ; 97(11): 1418-1423, 2013 Nov.
Article in English | MEDLINE | ID: mdl-30708497

ABSTRACT

Maize rayado fino virus (MRFV) causes one of the most important virus diseases of maize in America. Severe yield losses, ranging from 10 to 50% in landraces to nearly 100% in contemporary cultivars, have been reported. Resistance has been reported in maize populations, but few resistant inbred lines have been identified. Maize inbred lines representing the range of diversity in the cultivated types and selected lines known to be resistant to other viruses were evaluated to identify novel sources of resistance to MRFV. The virus was transmitted to maize seedlings using the vector Dalbulus maidis, and disease incidence and severity were evaluated beginning 7 days postinoculation. Most of the 36 lines tested were susceptible to MRFV, with mean disease incidence ranging from 21 to 96%, and severity from 1.0 to 4.3 (using a 0 to 5 severity scale). A few genotypes, including CML333 and Ki11, showed intermediate levels of resistance, with 14 and 10% incidence, respectively. Novel sources of resistance, with incidence of less than 5% and severity ratings of 0.4 or less, included the inbred lines Oh1VI, CML287, and Cuba. In Oh1VI, resistance appeared to be dominant, and segregation of resistance in F2 plants was consistent with one or two resistance genes. The discovery of novel sources of resistance in maize inbred lines will facilitate the identification of virus resistance genes and their incorporation into breeding programs.

13.
Mol Plant Pathol ; 24(7): 788-800, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36239302

ABSTRACT

Recent reverse genetics technologies have enabled genetic manipulation of plant negative-strand RNA virus (NSR) genomes. Here, we report construction of an infectious clone for the maize-infecting Alphanucleorhabdovirus maydis, the first efficient NSR vector for maize. The full-length infectious clone was established using agrobacterium-mediated delivery of full-length maize mosaic virus (MMV) antigenomic RNA and the viral core proteins (nucleoprotein N, phosphoprotein P, and RNA-directed RNA polymerase L) required for viral transcription and replication into Nicotiana benthamiana. Insertion of intron 2 ST-LS1 into the viral L gene increased stability of the infectious clone in Escherichia coli and Agrobacterium tumefaciens. To monitor virus infection in vivo, a green fluorescent protein (GFP) gene was inserted in between the N and P gene junctions to generate recombinant MMV-GFP. Complementary DNA (cDNA) clones of MMV-wild type (WT) and MMV-GFP replicated in single cells of agroinfiltrated N. benthamiana. Uniform systemic infection and high GFP expression were observed in maize inoculated with extracts of the infiltrated N. benthamiana leaves. Insect vectors supported virus infection when inoculated via feeding on infected maize or microinjection. Both MMV-WT and MMV-GFP were efficiently transmitted to maize by planthopper vectors. The GFP reporter gene was stable in the virus genome and expression remained high over three cycles of transmission in plants and insects. The MMV infectious clone will be a versatile tool for expression of proteins of interest in maize and cross-kingdom studies of virus replication in plant and insect hosts.


Subject(s)
Hemiptera , Zea mays , Animals , DNA, Complementary , Zea mays/genetics , Insect Vectors , Nicotiana/genetics , Genetic Vectors
14.
PLoS One ; 18(2): e0281484, 2023.
Article in English | MEDLINE | ID: mdl-36745639

ABSTRACT

Maize lethal necrosis is a destructive virus disease of maize caused by maize chlorotic mottle virus (MCMV) in combination with a virus in the family Potyviridae. Emergence of MLN is typically associated with the introduction of MCMV or its vectors and understanding its spread through seed is critical for disease management. Previous studies suggest that although MCMV is detected on seed, the seed transmission rate of this virus is low. However, mechanisms influencing its transmission are poorly understood. Elucidating these mechanisms is crucial for informing strategies to prevent spread on contaminated seed. In this study, we evaluated the rate of MCMV seed transmission using seed collected from plants that were artificially inoculated with MCMV isolates from Hawaii and Kenya. Grow-out tests indicated that MCMV transmission through seed was rare, with a rate of 0.004% among the more than 85,000 seed evaluated, despite detection of MCMV at high levels in the seed lots. To understand factors that limit transmission from seed, MCMV distribution in seed tissues was examined using serology and immunolocalization. The virus was present at high levels in maternal tissues, the pericarp and pedicel, but absent from filial endosperm and embryo seed tissues. The ability to transmit MCMV from seed to uninfected plants was tested to evaluate virus viability. Transmission was negatively associated with both seed maturity and moisture content. Transmission of MCMV from infested seed dried to less than 15% moisture was not detected, suggesting proper handling could be important for minimizing spread of MCMV through seed.


Subject(s)
Plant Diseases , Potyviridae , Tombusviridae , Zea mays , Kenya , Plant Diseases/virology , Zea mays/virology , Hawaii , Seeds/virology
15.
Appl Environ Microbiol ; 78(17): 6327-36, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22773631

ABSTRACT

Plant- and animal-pathogenic bacteria utilize phylogenetically distinct type III secretion systems (T3SS) that produce needle-like injectisomes or pili for the delivery of effector proteins into host cells. Pantoea stewartii subsp. stewartii (herein referred to as P. stewartii), the causative agent of Stewart's bacterial wilt and leaf blight of maize, carries phylogenetically distinct T3SSs. In addition to an Hrc-Hrp T3SS, known to be essential for maize pathogenesis, P. stewartii has a second T3SS (Pantoea secretion island 2 [PSI-2]) that is required for persistence in its flea beetle vector, Chaetocnema pulicaria (Melsh). PSI-2 belongs to the Inv-Mxi-Spa T3SS family, typically found in animal pathogens. Mutagenesis of the PSI-2 psaN gene, which encodes an ATPase essential for secretion of T3SS effectors by the injectisome, greatly reduces both the persistence of P. stewartii in flea beetle guts and the beetle's ability to transmit P. stewartii to maize. Ectopic expression of the psaN gene complements these phenotypes. In addition, the PSI-2 psaN gene is not required for P. stewartii pathogenesis of maize and is transcriptionally upregulated in insects compared to maize tissues. Thus, the Hrp and PSI-2 T3SSs play different roles in the life cycle of P. stewartii as it alternates between its insect vector and plant host.


Subject(s)
Bacterial Secretion Systems , Coleoptera/microbiology , Insect Vectors/microbiology , Pantoea/metabolism , Pantoea/pathogenicity , Zea mays/microbiology , Animals , Bacterial Proteins/genetics , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Gene Deletion , Genetic Complementation Test , Molecular Sequence Data , Plant Diseases/microbiology , Sequence Analysis, DNA , Virulence , Virulence Factors/genetics
16.
Phytopathology ; 102(12): 1176-81, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22809286

ABSTRACT

Hosta virus X (HVX) is rapidly becoming a serious pathogen of commercially important hosta plants worldwide. We report here biological and molecular characterization of a U.S. isolate of HVX, HVX-37. HVX-37 infectivity was tested in 21 hosta cultivars over three growth seasons, and three types of responses were defined based upon the ability of the virus to cause local and/or systemic infections. Four cultivars resistant to systemic HVX infection were identified. The full-length sequence of the HVX-37 genome was determined, the first complete sequence of a U.S. HVX isolate. Comparison with the previously sequenced HVX-Korea (Kr) genome revealed a high level of sequence similarity, as well as some differences. Notably, a 105-nucleotide long, near-perfect direct repeat in the Kr isolate is absent in HVX-37. The accuracy of the HVX-37 genome sequence was confirmed by infectivity of in vitro transcripts synthesized from a full-length HVX-37 cDNA on Nicotiana benthamiana and hosta plants.


Subject(s)
Hosta/virology , Plant Diseases/virology , Plant Viruses/classification , Plant Viruses/genetics , DNA, Complementary/genetics , DNA, Viral/genetics , Gene Expression Regulation, Viral , Genome, Viral , Phylogeography , RNA, Viral , United States
17.
J Econ Entomol ; 115(4): 1059-1068, 2022 08 10.
Article in English | MEDLINE | ID: mdl-35569031

ABSTRACT

The soybean aphid (Aphis glycines Matsumura) is an economically important invasive pest of soybean. In addition to damage caused by soybean aphid feeding on the phloem sap, this insect also transmits many plant viruses, including soybean mosaic virus (SMV). Previous work has shown that plant viruses can change plant host phenotypes to alter the behavior of their insect vectors to promote virus spread, known as the vector manipulation hypothesis. In this study, we used electropenetography (EPG) to examine the effects of two plant viruses on soybean aphid feeding behavior: SMV, which is transmitted by many aphid species including the soybean aphid, and bean pod mottle virus (BPMV), which is transmitted by chrysomelid and some coccinellid beetles but not aphids. These two viruses often co-occur in soybean production and can act synergistically. Surprisingly, our results showed little to no effect of SMV on soybean aphid feeding behaviors measured by EPG, but profound differences were observed in aphids feeding on BPMV-infected plants. Aphids took longer to find the vascular bundle of BPMV-infected plants, and once found, spent more time entering and conditioning the phloem than ingesting phloem sap. Interestingly, these observed alterations are similar to those of aphids feeding on insect-resistant soybean plants. The cause of these changes in feeding behavior is not known, and how they impact virus transmission and soybean aphid populations in the field will require further study.


Subject(s)
Aphids , Coleoptera , Fabaceae , Plant Viruses , Animals , Comovirus , Feeding Behavior , Potyvirus , Glycine max/genetics
18.
Stress Biol ; 2(1): 2, 2022 Jan 07.
Article in English | MEDLINE | ID: mdl-37676518

ABSTRACT

Agricultural production is hampered by disease, pests, and environmental stresses. To minimize yield loss, it is important to develop crop cultivars with resistance or tolerance to their respective biotic and abiotic constraints. Transformation techniques are not optimized for many species and desirable cultivars may not be amenable to genetic transformation, necessitating inferior cultivar usage and time-consuming introgression through backcrossing to the preferred variety. Overcoming these limitations will greatly facilitate the development of disease, insect, and abiotic stress tolerant crops. One such avenue for rapid crop improvement is the development of viral systems to deliver CRISPR/Cas-based genome editing technology to plants to generate targeted beneficial mutations. Viral delivery of genomic editing constructs can theoretically be applied to span the entire host range of the virus utilized, circumventing the challenges associated with traditional transformation and breeding techniques. Here we explore the types of viruses that have been optimized for CRISPR/Cas9 delivery, the phenotypic outcomes achieved in recent studies, and discuss the future potential of this rapidly advancing technology.

19.
J Virol ; 84(15): 7793-802, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20504923

ABSTRACT

The capsid protein (CP) of Turnip crinkle virus (TCV) is a multifunctional protein needed for virus assembly, suppression of RNA silencing-based antiviral defense, and long-distance movement in infected plants. In this report, we have examined genetic requirements for the different functions of TCV CP and evaluated the interdependence of these functions. A series of TCV mutants containing alterations in the CP coding region were generated. These alterations range from single-amino-acid substitutions and domain truncations to knockouts of CP translation. The latter category also contained two constructs in which the CP coding region was replaced by either the cDNA of a silencing suppressor of a different virus or that of green fluorescent protein. These mutants were used to infect Arabidopsis plants with diminished antiviral silencing capability (dcl2 dcl3 dcl4 plants). There was a strong correlation between the ability of mutants to reach systemic leaves and the silencing suppressor activity of mutant CP. Virus particles were not essential for entry of the viral genome into vascular bundles in the inoculated leaves in the absence of antiviral silencing. However, virus particles were necessary for egress of the viral genome from the vasculature of systemic leaves. Our experiments demonstrate that TCV CP not only allows the viral genome to access the systemic movement channel through silencing suppression but also ensures its smooth egress by way of assembled virus particles. These results illustrate that efficient long-distance movement of TCV requires both functions afforded by the CP.


Subject(s)
Arabidopsis/immunology , Arabidopsis/virology , Capsid Proteins/physiology , Carmovirus/pathogenicity , Gene Silencing , Movement , Capsid Proteins/genetics , Gene Knockout Techniques , Plant Leaves/virology , Point Mutation , RNA, Viral/antagonists & inhibitors , Sequence Deletion
20.
Theor Appl Genet ; 123(5): 729-40, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21667271

ABSTRACT

Genes on chromosomes six (Wsm1), three (Wsm2) and ten (Wsm3) in the maize (Zea mays L.) inbred line Pa405 control resistance to Wheat streak mosaic virus (WSMV), and the same or closely linked genes control resistance to Maize dwarf mosaic virus (MDMV) and Sugarcane mosaic virus (SCMV). Near isogenic lines (NIL) carrying one or two of the genes were developed by introgressing regions of the respective chromosomes into the susceptible line Oh28 and tested for their responses to WSMV, MDMV, and SCMV in the field and greenhouse. F(1) progeny from NIL × Oh28 were also tested. Wsm1, or closely linked genes, provided resistance to all three viruses, as determined by symptom incidence and severity. Wsm2 and Wsm3 provided resistance to WSMV. Wsm2 and/or Wsm3 provided no resistance to MDMV, but significantly increased resistance in plants with one Wsm1 allele. NIL carrying Wsm1, Wsm2, or Wsm3 had similar SCMV resistance in the field, but NIL with Wsm2 and Wsm3 were not resistant in the greenhouse. Addition of Wsm2 to Wsm1 increased SCMV resistance in the field. For all viruses, symptom incidence was higher in the greenhouse than in the field, and relative disease severity was higher in the greenhouse for WSMV and MDMV. An Italian MDMV isolate and the Ohio SCMV infected the Wsm1 NIL, while the Ohio MDMV and Seehausen SCMV isolates did not. Our results indicate that the three genes, or closely linked loci, provide virus resistance. Resistance conferred by the three genes is influenced by interactions among the genes, the virus species, the virus isolate, and the environment.


Subject(s)
Plant Diseases/genetics , Potyviridae/physiology , Zea mays/genetics , Chromosomes, Plant , Disease Resistance/genetics , Genes, Plant/physiology , Genotype , Plant Diseases/virology , Zea mays/virology
SELECTION OF CITATIONS
SEARCH DETAIL