Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 123
Filter
1.
Molecules ; 28(3)2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36771057

ABSTRACT

(1) Background: Malignant gliomas are aggressive tumors characterized by fast cellular growth and highly invasive properties. Despite all biological and clinical advances in therapy, the standard treatment remains essentially palliative. Therefore, searching for alternative therapies that minimize adverse symptoms and improve glioblastoma patients' outcomes is imperative. Natural products represent an essential source in the discovery of such new drugs. Plants from the cerrado biome have been receiving increased attention due to the presence of secondary metabolites with significant therapeutic potential. (2) Aim: This study provides data on the cytotoxic potential of 13 leaf extracts obtained from plants of 5 families (Anacardiaceae, Annonaceae, Fabaceae, Melastomataceae e Siparunaceae) found in the Brazilian cerrado biome on a panel of 5 glioma cell lines and one normal astrocyte. (3) Methods: The effect of crude extracts on cell viability was evaluated by MTS assay. Mass spectrometry (ESI FT-ICR MS) was performed to identify the secondary metabolites classes presented in the crude extracts and partitions. (4) Results: Our results revealed the cytotoxic potential of Melastomataceae species Miconia cuspidata, Miconia albicans, and Miconia chamissois. Additionally, comparing the four partitions obtained from M. chamissois crude extract indicates that the chloroform partition had the greatest cytotoxic activity against the glioma cell lines. The partitions also showed a mean IC50 close to chemotherapy, temozolomide; nevertheless, lower toxicity against normal astrocytes. Analysis of secondary metabolites classes presented in these crude extracts and partitions indicates the presence of phenolic compounds. (5) Conclusions: These findings highlight M. chamissois chloroform partition as a promising component and may guide the search for the development of additional new anticancer therapies.


Subject(s)
Antineoplastic Agents , Glioma , Melastomataceae , Humans , Brazil , Chloroform , Cell Line , Antineoplastic Agents/pharmacology , Plant Extracts/pharmacology , Melastomataceae/chemistry , Glioma/drug therapy , Ecosystem
2.
Hum Mutat ; 42(3): 290-299, 2021 03.
Article in English | MEDLINE | ID: mdl-33326660

ABSTRACT

The current study aimed to identify new breast and/or ovarian cancer predisposition genes. For that, whole-exome sequencing (WES) was performed in the germline DNA of 52 non-BRCA1/BRCA2/TP53 mutation carrier women at high-risk for hereditary breast and ovarian cancer (HBOC). All variants were classified using information from population and disease specific databases, in silico prediction tools and the American College of Medical Genetics and Genomics (ACMG) criteria. Loss of heterozygosity (LOH) of tumor samples and segregation analyses were performed whenever possible. The variants identified were investigated in a second, independent cohort of 17 BC cases. Pathogenic/Likely Pathogenic variants were identified in known cancer genes such as CHEK2, MUTYH, PMS2, and RAD51C. Rare and potentially pathogenic variants were identified in DNA repair genes (FAN1, POLQ, and RAD54L) and other cancer-related genes such as DROSHA and SLC34A2. Interestingly, the variant c.149T>G in the FAN1 gene was identified in two unrelated families, and exhibited LOH in the tumor tissue of one of them. In conclusion, this is the largest Brazilian WES study involving families at high-risk for HBOC which has brought novel insights into the role of potentially new genetic risk factors for hereditary breast and ovarian cancer.


Subject(s)
Breast Neoplasms , Hereditary Breast and Ovarian Cancer Syndrome , Ovarian Neoplasms , BRCA1 Protein/genetics , BRCA2 Protein/genetics , Breast Neoplasms/pathology , Female , Genes, BRCA2 , Genetic Predisposition to Disease , Germ-Line Mutation , Hereditary Breast and Ovarian Cancer Syndrome/genetics , Humans , Loss of Heterozygosity , Mutation , Ovarian Neoplasms/genetics , Exome Sequencing
3.
BMC Cancer ; 21(1): 76, 2021 Jan 18.
Article in English | MEDLINE | ID: mdl-33461524

ABSTRACT

BACKGROUND: Breast cancer is the most frequently diagnosed malignancy among women. However, the role of microRNA (miRNA) expression in breast cancer progression is not fully understood. In this study we examined predictive interactions between differentially expressed miRNAs and mRNAs in breast cancer cell lines representative of the common molecular subtypes. Integrative bioinformatics analysis identified miR-193 and miR-210 as potential regulatory biomarkers of mRNA in breast cancer. Several recent studies have investigated these miRNAs in a broad range of tumors, but the mechanism of their involvement in cancer progression has not previously been investigated. METHODS: The miRNA-mRNA interactions in breast cancer cell lines were identified by parallel expression analysis and miRNA target prediction programs. The expression profiles of mRNA and miRNAs from luminal (MCF-7, MCF-7/AZ and T47D), HER2 (BT20 and SK-BR3) and triple negative subtypes (Hs578T e MDA-MB-231) could be clearly separated by unsupervised analysis using HB4A cell line as a control. Breast cancer miRNA data from TCGA patients were grouped according to molecular subtypes and then used to validate these findings. Expression of miR-193 and miR-210 was investigated by miRNA transient silencing assays using the MCF7, BT20 and MDA-MB-231 cell lines. Functional studies included, xCELLigence system, ApoTox-Glo triplex assay, flow cytometry and transwell inserts were performed to determine cell proliferation, cytotoxicity, apoptosis, migration and invasion, respectively. RESULTS: The most evident effects were associated with cell proliferation after miR-210 silencing in triple negative subtype cell line MDA-MB-231. Using in silico prediction algorithms, TNFRSF10 was identified as one of the potential regulated downstream targets for both miRNAs. The TNFRSF10C and TNFRSF10D mRNA expression inversely correlated with the expression levels of miR-193 and miR210 in breast cell lines and breast cancer patients, respectively. Other potential regulated genes whose expression also inversely correlated with both miRNAs were CCND1, a known mediator on invasion and metastasis, and the tumor suppressor gene RUNX3. CONCLUSIONS: In summary, our findings identify miR-193 and miR-210 as potential regulatory miRNA in different molecular subtypes of breast cancer and suggest that miR-210 may have a specific role in MDA-MB-231 proliferation. Our results highlight important new downstream regulated targets that may serve as promising therapeutic pathways for aggressive breast cancers.


Subject(s)
Biomarkers, Tumor/metabolism , Breast Neoplasms/genetics , Gene Expression Regulation, Neoplastic/genetics , MicroRNAs/metabolism , Biomarkers, Tumor/analysis , Breast/pathology , Breast Neoplasms/diagnosis , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Proliferation/genetics , Computational Biology , Core Binding Factor Alpha 3 Subunit/genetics , Cyclin D1/genetics , Female , GPI-Linked Proteins/genetics , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/drug effects , Humans , MicroRNAs/analysis , MicroRNAs/antagonists & inhibitors , MicroRNAs/genetics , Oligonucleotide Array Sequence Analysis , Receptors, Tumor Necrosis Factor, Member 10c/genetics , Tumor Necrosis Factor Decoy Receptors/genetics
4.
Cancer Control ; 28: 10732748211038736, 2021.
Article in English | MEDLINE | ID: mdl-34406894

ABSTRACT

BACKGROUND: Alongside the SARS-CoV-2 (COVID-19) pandemic, Brazil also faces an ongoing rise in cancer burden. In 2020, there were approximately 592 000 new cancer cases and 260 000 cancer deaths. Considering the heterogeneities across Brazil, this study aimed to estimate the impact of the COVID-19 pandemic on cancer-related hospital admissions at a national and regional level. METHODS: The national, regional, and state-specific monthly average of cancer-related hospital admission rates per 100 000 inhabitants and 95% confidence intervals (95% CIs) were calculated from March to July (2019: pre-COVID-19; and 2020: COVID-19 period). Thematic maps were constructed to compare the rates between periods and regions. RESULTS: Cancer-related hospital admissions were reduced by 26% and 28% for clinical and surgical purposes, respectively. In Brazil, the average hospitalization rates decreased from 13.9 in 2019 to 10.2 in 2020 per 100,000 inhabitants, representing a rate difference of -3.7 (per 100,000 inhabitants; 95% CI: -3.9 to -3.5) for cancer-related (clinical) hospital admissions. Surgical hospital admissions showed a rate decline of -5.8 per 100,000 (95% CI: -6.0 to -5.5). The reduction in cancer-related admissions for the surgical procedure varies across regions ranging between -2.2 and -10.8 per 100 000 inhabitants, with the most significant decrease observed in the south and southeastern Brazil. CONCLUSIONS: We observed a substantial decrease in cancer-related hospital admissions during the COVID-19 pandemic with marked differences across regions. Delays in treatment may negatively impact cancer survival in the future; hence, cancer control strategies to mitigate the impact are needed.


Subject(s)
COVID-19/prevention & control , Hospitalization/statistics & numerical data , Neoplasms/therapy , Patient Admission/statistics & numerical data , Brazil/epidemiology , COVID-19/epidemiology , COVID-19/virology , Geography , Hospitalization/trends , Humans , Medical Oncology/statistics & numerical data , Neoplasms/diagnosis , Pandemics , SARS-CoV-2/physiology
5.
J Pathol ; 251(1): 87-99, 2020 05.
Article in English | MEDLINE | ID: mdl-32154590

ABSTRACT

The oncogene brachyury (TBXT) is a T-box transcription factor that is overexpressed in multiple solid tumors and is associated with tumor aggressiveness and poor patient prognosis. Gliomas comprise the most common and aggressive group of brain tumors, and at the present time the functional and clinical impact of brachyury expression has not been investigated previously in these neoplasms. Brachyury expression (mRNA and protein) was assessed in normal brain (n = 67), glioma tissues (n = 716) and cell lines (n = 42), and further in silico studies were undertaken using genomic databases totaling 3115 samples. Our glioma samples were analyzed for copy number (n = 372), promoter methylation status (n = 170), and mutation status (n = 1569 tissues and n = 52 cell lines) of the brachyury gene. The prognostic impact of brachyury expression was studied in 1524 glioma patient tumors. The functional impact of brachyury on glioma proliferation, viability, and cell death was evaluated both in vitro and in vivo. Brachyury was expressed in the normal brain, and significantly downregulated in glioma tissues. Loss of brachyury was associated with tumor aggressiveness and poor survival in glioma patients. Downregulation of brachyury was not associated with gene deletion, promoter methylation, or inactivating point mutations. Brachyury re-expression in glioma cells was found to decrease glioma tumorigenesis by induction of autophagy. These data strongly suggest that brachyury behaves as a tumor suppressor gene in gliomas by modulating autophagy. It is important to note that brachyury constitutes an independent positive biomarker of patient prognosis. Our findings indicate that the role of brachyury in tumorigenesis may be tissue-dependent and demands additional investigation to guide rational interventions. © 2020 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
Brain Neoplasms/pathology , Fetal Proteins/metabolism , Gene Expression Regulation, Neoplastic , Glioma/genetics , T-Box Domain Proteins/metabolism , Animals , Biomarkers, Tumor/genetics , Brain Neoplasms/genetics , Cell Line, Tumor , Fetal Proteins/genetics , Genes, Tumor Suppressor/physiology , Glioma/pathology , Humans , Mice , Prognosis , Promoter Regions, Genetic , T-Box Domain Proteins/genetics , Transcription Factors/metabolism
6.
Neuropathology ; 41(1): 21-28, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33191640

ABSTRACT

Pilocytic astrocytoma (PA) is the most frequent solid neoplasm in childhood. It has a good 5-year overall survival (90% in childhood and 52% in adults). However, up to 20% of patients experience residual tumor growth, recurrence, and death. Although the main genetic alteration of PAs, including KIAA1549:BRAF fusion, involves chromosome 7q34, we previously found frequent loss in chr9q34.3 locus in a small subset of these tumors. Among the genes present in this locus, EGFL7 is related to poor prognosis in several tumor types. In this study, we aimed to assess EGFL7 expression through immunohistochemistry, and to evaluate its prognostic value in a series of 64 clinically and molecularly well-characterized pilocytic astrocytomas. We found high expression of EGFL7 in 71.9% of patients. Low EGFL7 expression was associated with older patients, the mean age mainly older than 11 years (P = 0.027). EGFL7 expression was not associated with presence of KIAA1549:BRAF fusion, BRAF mutation, FGFR1 mutation, nor FGFR1 duplication. Moreover, high EGFL7 expression was associated with high FGFR1 (P = 0.037) and 5'-deoxy-5'-methyltioadenosine phosphorylase (MTAP) (P = 0.005) expression, and with unfavorable outcome of patients (P = 0.047). Multivariate analysis revealed low EGFL7 expression related to older patients and high EGFL7 expression related to retained expression of MTAP. In addition, we found a borderline significance of unfavorable outcome and high EGFL7 expression. Finally, EGFL7 expression was not associated with overall or event-free survival of PA patients. Our findings point to EGFL7 expression as a novel candidate prognostic marker in PA, which should be further investigated.


Subject(s)
Astrocytoma/diagnosis , Astrocytoma/metabolism , Brain Neoplasms/diagnosis , Brain Neoplasms/metabolism , Calcium-Binding Proteins/biosynthesis , EGF Family of Proteins/biosynthesis , Adolescent , Adult , Astrocytoma/genetics , Brain Neoplasms/genetics , Calcium-Binding Proteins/genetics , Child , Child, Preschool , EGF Family of Proteins/genetics , Female , Humans , Infant , Male , Middle Aged , Mutation/genetics , Prognosis , Young Adult
7.
Int J Mol Sci ; 22(7)2021 Mar 25.
Article in English | MEDLINE | ID: mdl-33806119

ABSTRACT

Cervical cancer is the third most common in Brazilian women. The chemotherapy used for the treatment of this disease can cause many side effects; then, to overcome this problem, new treatment options are necessary. Natural compounds represent one of the most promising sources for the development of new drugs. In this study, 13 different species of 6 families from the Brazilian Cerrado vegetation biome were screened against human cervical cancer cell lines (CCC). Some of these species were also evaluated in one normal keratinocyte cell line (HaCaT). The effect of crude extracts on cell viability was evaluated by a colorimetric method (MTS assay). Extracts from Annona crassiflora, Miconia albicans, Miconia chamissois, Stryphnodendron adstringens, Tapirira guianensis, Xylopia aromatica, and Achyrocline alata showed half-maximal inhibitory concentration (IC50) values < 30 µg/mL for at least one CCC. A. crassiflora and S. adstringens extracts were selective for CCC. Mass spectrometry (Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometer (ESI FT-ICR MS)) of A. crassiflora identified fatty acids and flavonols as secondary compounds. One of the A. crassiflora fractions, 7C24 (from chloroform partition), increased H2AX phosphorylation (suggesting DNA damage), PARP cleavage, and cell cycle arrest in CCC. Kaempferol-3-O-rhamnoside and oleic acid were bioactive molecules identified in 7C24 fraction. These findings emphasize the importance of investigating bioactive molecules from natural sources for developing new anti-cancer drugs.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Bioprospecting/methods , Colorimetry/methods , Uterine Cervical Neoplasms/metabolism , Annona/metabolism , Brazil/epidemiology , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Survival , Ecosystem , Fatty Acids/chemistry , Female , Flavonols/chemistry , HaCaT Cells , HeLa Cells , Humans , Inhibitory Concentration 50 , Mass Spectrometry , Plant Extracts/pharmacology , Spectrometry, Mass, Electrospray Ionization , Uterine Cervical Neoplasms/drug therapy
8.
Invest New Drugs ; 37(5): 1029-1035, 2019 10.
Article in English | MEDLINE | ID: mdl-30706338

ABSTRACT

The latex from Euphorbia tirucalli is used in Brazil as a folk medicine for several diseases, including cancer. Recently, we showed a cytotoxic activity of E. tirucalli euphol in a wide range of cancer cell lines. Moreover, we showed that euphol inhibits proliferation, motility and colony formation in pancreatic cancer cells, induces autophagy and sensitizes glioblastoma cells to temozolomide cytotoxicity. Herein, we report in vitro activity of three semi-synthetic ingenol compounds derived from E. tirucalli, IngA (ingenol-3-trans-cinnamate), IngB (ingenol-3-hexanoate) and IngC (ingenol-3-dodecanoate), against a large panel of human cancer cell lines. Antineoplastic effects of the three semi-synthetic compounds were assessed using MTS assays on 70 cancer cell lines from a wide array of solid tumors. Additionally, their antitumor potential was compared with known compounds of the same class, namely ingenol-3-angelate (Picato®) and ingenol 3,20-dibenzoate and in combination with standard chemotherapeutic agents. We observed that IngA, B, and C exhibited dose-dependent cytotoxic effects. Amongst the semi-synthetic compounds, IngC displayed the best activity across the tumor cell lines. In comparison with ingenol-3-angelate and ingenol 3,20-dibenzoate, IngC showed a mean of 6.6 and 3.6-fold higher efficacy, respectively, against esophageal cancer cell lines. Besides, IngC sensitized esophageal cancer cells to paclitaxel treatment. In conclusion, the semi-synthetic ingenol compounds, in particular, IngC, demonstrated a potent antitumor activity on all cancer cell lines evaluated. Although the underlying mechanisms of action of IngC are not elucidated, our results provide insights for further studies suggesting IngC as a putative therapy for cancer treatment.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Apoptosis/drug effects , Cell Proliferation/drug effects , Diterpenes/pharmacology , Euphorbia/chemistry , Neoplasms/drug therapy , Neoplasms/pathology , Antineoplastic Agents, Phytogenic/chemistry , Diterpenes/chemistry , Humans , Tumor Cells, Cultured
9.
Invest New Drugs ; 37(4): 602-615, 2019 08.
Article in English | MEDLINE | ID: mdl-30155717

ABSTRACT

Cervical cancer is the third most commonly diagnosed tumor type and the fourth cause of cancer-related death in females. Therapeutic options for cervical cancer patients remain very limited. Annona crassiflora Mart. is used in traditional medicine as antimicrobial and antineoplastic agent. However, little is known about its antitumoral properties. In this study the antineoplastic effect of crude extract and derived partitions from A. crassiflora Mart in cervical cancer cell lines was evaluated. The crude extract significantly alters cell viability of cervical cancer cell lines as well as proliferation and migration, and induces cell death in SiHa cells. Yet, the combination of the crude extract with cisplatin leads to antagonistic effect. Importantly, the hexane partition derived from the crude extract presented cytotoxic effect both in vitro and in vivo, and initiates cell responses, such as DNA damage (H2AX activity), apoptosis via intrinsic pathway (cleavage of caspase-9, caspase-3, poly (ADP-ribose) polymerase (PARP) and mitochondrial membrane depolarization) and decreased p21 expression by ubiquitin proteasome pathway. Concluding, this work shows that hexane partition triggers several biological responses such as DNA damage and apoptosis, by intrinsic pathways, and was also able to promote a direct decrease in tumor perimeter in vivo providing a basis for further investigation on its antineoplastic activity on cervical cancer.


Subject(s)
Annona , Antineoplastic Agents, Phytogenic/pharmacology , Plant Extracts/pharmacology , Uterine Cervical Neoplasms/drug therapy , Animals , Apoptosis/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cell Survival/drug effects , Chick Embryo , DNA Damage , Female , Hexanes/chemistry , Humans , Neovascularization, Pathologic/drug therapy , Plant Leaves , Solvents/chemistry , Uterine Cervical Neoplasms/pathology
10.
Neuropathology ; 38(5): 475-483, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30155928

ABSTRACT

Medulloblastoma is the most frequent malignant brain tumor in children. Four medulloblastoma molecular subgroups, MBSHH , MBWNT , MBGRP3 and MBGRP4 , have been identified by integrated high-throughput platforms. Recently, a 22-gene panel NanoString-based assay was developed for medulloblastoma molecular subgrouping, but the robustness of this assay has not been widely evaluated. Mutations in the gene for human telomerase reverse transcriptase (hTERT) have been found in medulloblastomas and are associated with distinct molecular subtypes. This study aimed to implement the 22-gene panel in a Brazilian context, and to associate the molecular profile with patients' clinical-pathological features. Formalin-fixed, paraffin-embedded (FFPE) medulloblastoma samples (n = 104) from three Brazilian centers were evaluated. Expression profiling of the 22-gene panel was performed by NanoString and a Canadian series (n = 240) was applied for training phase. hTERT mutations were analyzed by PCR followed by direct Sanger sequencing and the molecular profile was associated with patients' clinicopathological features. Overall, 65% of the patients were male, average age at diagnosis was 18 years and 7% of the patients presented metastasis at diagnosis. The molecular classification was attained in 100% of the cases, with the following frequencies: MBSHH (n = 51), MBWNT (n = 19), MBGRP4 (n = 19) and MBGRP3 (n = 15). The MBSHH and MBGRP3 subgroups were associated with older and younger patients, respectively. The MBGRP4 subgroup exhibited the lowest 5-year cancer-specific overall survival (OS), yet in the multivariate analysis, only metastasis at diagnosis and surgical resection were associated with OS. hTERT mutations were detected in 29% of the cases and were associated with older patients, increased hTERT expression and MBSHH subgroup. The 22-gene panel provides a reproducible assay for molecular subgrouping of medulloblastoma FFPE samples in a routine setting and is well-suited for future clinical trials.


Subject(s)
Cerebellar Neoplasms/genetics , Cerebellar Neoplasms/pathology , Gene Expression Profiling/methods , Medulloblastoma/genetics , Medulloblastoma/pathology , Adolescent , Adult , Cerebellar Neoplasms/mortality , Child , Child, Preschool , Disease-Free Survival , Female , Humans , Kaplan-Meier Estimate , Male , Medulloblastoma/mortality , Middle Aged , Prognosis , Reproducibility of Results , Transcriptome , Young Adult
11.
Mol Carcinog ; 56(12): 2630-2642, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28762551

ABSTRACT

Glioblastoma (GBM) is one of the most glycolytic and angiogenic human tumors, characteristics that contribute to the poor prognosis associated with this type of tumor. A lactate shuttle has been described between tumor cells and endothelial cells (ECs), with the monocarboxylate transporters (MCTs) acting as important players in this tumor-EC communication. In this study, we aimed to understand how the tumor microenvironment modulates EC metabolism, and to characterize the role of MCTs in the glioma-brain EC crosstalk. Exposure of human brain microvascular ECs (HBMEC) to GBM cell-conditioned media increased the expression of MCT1, which corresponded to activation of oxidative metabolism and an increase in angiogenic capacity, as determined by increased proliferation, migration, and vessel assembly. Lactate depletion from the microenvironment or inhibition of lactate uptake in HBMEC induced an increase in lactate production and a decrease in proliferation, migration, and vessel assembly. Moreover, addition of lactate to HBMEC media promoted activation of AKT and AMPK pathways and increased expression in NFκB, HIF-1α, and the lactate receptor GPR81. Here, we demonstrate a role for MCT1 as a mediator of lactate signaling between glioma cells and brain ECs. Our results suggest that MCT1 can mediate EC metabolic reprograming, proliferation, and vessel sprouting in response to tumor signaling. Thus, targeting MCT1 in both tumor cells and brain EC may be a promising therapeutic strategy for the treatment of GBM.


Subject(s)
Endothelial Cells/metabolism , Monocarboxylic Acid Transporters/metabolism , Symporters/metabolism , Tumor Microenvironment , Blotting, Western , Brain Neoplasms/blood supply , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Cell Line, Tumor , Cell Movement/drug effects , Cell Movement/genetics , Cell Proliferation/drug effects , Cell Proliferation/genetics , Culture Media, Conditioned/pharmacology , Endothelial Cells/drug effects , Glioma/blood supply , Glioma/genetics , Glioma/metabolism , Humans , Lactic Acid/metabolism , Monocarboxylic Acid Transporters/genetics , Neovascularization, Pathologic/genetics , RNA Interference , Signal Transduction/drug effects , Signal Transduction/genetics , Symporters/genetics
12.
J Neurooncol ; 132(1): 27-34, 2017 03.
Article in English | MEDLINE | ID: mdl-28083786

ABSTRACT

Abnormal expression of the long non-coding RNA HOX transcript antisense intergenic RNA (HOTAIR) is oncogenic in several human cancers, including gliomas. The HOTAIR single nucleotide polymorphisms (SNPs) rs920778 (C > T) and rs12826786 (C > T) present in the intronic enhancer and promoter regions of HOTAIR, respectively, are associated with expression, cancer susceptibility, and patient prognosis in some tumor types. However, the relevance of these HOTAIR SNPs has not been studied in glioma. Here, we report a case-control study comprising 177 Portuguese glioma patients and 199 cancer-free controls. All subjects were genotyped by PCR and restriction fragment length polymorphism (RFLP). No statistically significant differences were found in the genotype or allele distributions of either rs920778 or rs12826786 between glioma patients and controls, suggesting these SNPs are not associated with glioma risk. No significant associations were found between rs920778 variants and HOTAIR expression levels, while rs12826786 CT genotype was associated with increased intratumoral HOTAIR RNA levels when compared to TT genotype (p-value = 0.04). Univariate (Log-rank) and multivariate (Cox proportional) analyses showed both rs920778 CT and rs12826786 CT genotypes were significantly associated with longer overall survival of WHO grade III anaplastic oligodendroglioma patients. Our results suggest that HOTAIR SNPs rs920778 and rs12826786 do not play a significant role in glioma susceptibility, but may be important prognostic factors in anaplastic oligodendroglioma patients. Future studies are warranted to validate and expand these findings, and to further dissect the importance of these SNPs in glioma.


Subject(s)
Brain Neoplasms/diagnosis , Brain Neoplasms/genetics , Genetic Predisposition to Disease , Glioma/diagnosis , Glioma/genetics , RNA, Long Noncoding/genetics , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor , Case-Control Studies , Female , Gene Frequency , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Polymorphism, Single Nucleotide , Prognosis
13.
BMC Pulm Med ; 17(1): 86, 2017 May 26.
Article in English | MEDLINE | ID: mdl-28549458

ABSTRACT

BACKGROUND: ALK-rearranged lung cancers exhibit specific pathologic and clinical features and are responsive to anti-ALK therapies. Therefore, the detection of ALK-rearrangement is fundamental for personalized lung cancer therapy. Recently, new molecular techniques, such as NanoString nCounter, have been developed to detect ALK fusions with more accuracy and sensitivity. METHODS: In the present study, we intended to validate a NanoString nCounter ALK-fusion panel in routine biopsies of FFPE lung cancer patients. A total of 43 samples were analyzed, 13 ALK-positive and 30 ALK-negative, as previously detected by FISH and/or immunohistochemistry. RESULTS: The NanoString panel detected the presence of the EML4-ALK, KIF5B-ALK and TFG-ALK fusion variants. We observed that all the 13 ALK-positive cases exhibited genetic aberrations by the NanoString methodology. Namely, six cases (46.15%) presented EML-ALK variant 1, two (15.38%) presented EML-ALK variant 2, two (15.38%) presented EML-ALK variant 3a, and three (23.07%) exhibited no variant but presented unbalanced expression between 5'/3' exons, similar to other positive samples. Importantly, for all these analyses, the initial input of RNA was 100 ng, and some cases displayed poor RNA quality measurements. CONCLUSIONS: In this study, we reported the great utility of NanoString technology in the assessment of ALK fusions in routine lung biopsies of FFPE specimens.


Subject(s)
Adenocarcinoma/genetics , Lung Neoplasms/genetics , Oncogene Proteins, Fusion/genetics , RNA, Messenger/analysis , Humans , Immunohistochemistry , In Situ Hybridization, Fluorescence , Nanotechnology/methods , Retrospective Studies , Transcription, Genetic
14.
Pathobiology ; 83(1): 41-6, 2016.
Article in English | MEDLINE | ID: mdl-26859895

ABSTRACT

OBJECTIVE: Soft tissue sarcomas (STSs) are heterogeneous tumors displaying multiple and complex molecular abnormalities with no specific pattern. Despite current therapeutic advances, the patients with STS still have a poor outcome, which makes it necessary to find out new prognostic markers. The Raf kinase inhibitory protein (RKIP) has been associated with prognosis in several human neoplasms; however, its role in STS is unknown. METHODS: In the present study RKIP expression was assessed by immunohistochemistry in a series of 87 STSs, and its expression profile was associated with the patients' pathological parameters. RESULTS: We found that RKIP is expressed in the cytoplasm of the great majority of cases, and absent in only approximately 18% of cases (16/87). Importantly, we observed that loss of RKIP expression was associated with poor outcome, constituting an independent prognostic marker. CONCLUSION: This is the first study assessing RKIP expression levels in STS. We showed that loss of RKIP expression is present in a small subset of cases; however, its absence was associated with poor survival and may be a potential marker for STS prognosis.


Subject(s)
Phosphatidylethanolamine Binding Protein/genetics , Sarcoma/diagnosis , Sarcoma/genetics , Aged , Biomarkers, Tumor , Disease-Free Survival , Female , Humans , Immunohistochemistry , Male , Middle Aged , Prognosis , Sarcoma/pathology , Sarcoma/ultrastructure , Survival Analysis
15.
Gastric Cancer ; 19(2): 651-659, 2016 Apr.
Article in English | MEDLINE | ID: mdl-25995035

ABSTRACT

BACKGROUND: The T-box transcription factor Brachyury was recently reported to be upregulated and associated with prognosis in solid tumors. Here, we proposed to evaluate the potential use of Brachyury protein expression as a new prognostic biomarker in gastrointestinal stromal tumors (GIST). METHODS: Brachyury protein expression was analyzed by immunohistochemistry in a cohort of 63 bona fide GIST patients. Brachyury expression profiles were correlated with patients' clinicopathological features and prognostic impact. Additionally, an in silico analysis was performed using the Oncomine database to assess Brachyury alterations at DNA and mRNA levels in GISTs. RESULTS: We found that Brachyury was overexpressed in the majority (81.0 %) of primary GISTs. We observed Brachyury staining in the nucleus alone in 4.8 % of cases, 23.8 % depicted only cytoplasm staining, and 52.4 % of cases exhibited both nucleus and cytoplasm immunostaining. The presence of Brachyury was associated with aggressive GIST clinicopathological features. Particularly, Brachyury nuclear (with or without cytoplasm) staining was associated with the presence of metastasis, while cytoplasm sublocalization alone was correlated with poor patient survival. CONCLUSIONS: Herein, we demonstrate that Brachyury is overexpressed in GISTs and is associated with worse outcome, constituting a novel prognostic biomarker and a putative target for GIST treatment.


Subject(s)
Fetal Proteins/metabolism , Gastrointestinal Neoplasms/mortality , Gastrointestinal Neoplasms/pathology , Gastrointestinal Stromal Tumors/mortality , Gastrointestinal Stromal Tumors/pathology , T-Box Domain Proteins/metabolism , Aged , Biomarkers, Tumor/metabolism , Cell Nucleus/metabolism , Cytoplasm/metabolism , Female , Gastrointestinal Stromal Tumors/metabolism , Humans , Immunohistochemistry , Male , Middle Aged , Prognosis , Protein Array Analysis
16.
Genet Mol Biol ; 39(2): 168-77, 2016 May 13.
Article in English | MEDLINE | ID: mdl-27192127

ABSTRACT

The identification of families at-risk for hereditary cancer is extremely important due to the prevention potential in those families. However, the number of Brazilian genetic services providing oncogenetic care is extremely low for the continental dimension of the country and its population. Therefore, at-risk patients do not receive appropriate assistance. This report describes the creation, structure and management of a cancer genetics service in a reference center for cancer prevention and treatment, the Barretos Cancer Hospital (BCH). The Oncogenetics Department (OD) of BCH offers, free of charge, to all patients/relatives with clinical criteria, the possibility to perform i) genetic counseling, ii) preventive examinations and iii) genetic testing with the best quality standards. The OD has a multidisciplinary team and is integrated with all specialties. The genetic counseling process consists (mostly) of two visits. In 2014, 614 individuals (371 families) were seen by the OD. To date, over 800 families were referred by the OD for genetic testing. The support provided by the Oncogenetics team is crucial to identify at-risk individuals and to develop preventive and personalized behaviors for each situation, not only to the upper-middle class population, but also to the people whose only possibility is the public health system.

17.
Tumour Biol ; 36(8): 6525-32, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25813152

ABSTRACT

Transforming growth factor beta (TGF-ß) plays an important role in carcinogenesis. Two polymorphisms in the TGF-ß1 gene (-509C/T and 869T/C) were described to influence susceptibility to gastric and breast cancers. The 869T/C polymorphism was also associated with overall survival in breast cancer patients. In the present study, we investigated the relevance of these TGF-ß1 polymorphism in glioma risk and prognosis. A case-control study that included 114 glioma patients and 138 cancer-free controls was performed. Single nucleotide polymorphisms (SNPs) were evaluated by polymerase chain reaction followed by restriction fragment length polymorphism (PCR-RFLP). Univariate and multivariate logistic regression analyses were used to calculate odds ratio (OR) and 95 % confidence intervals (95 % CI). The influence of TGF-ß1 -509C/T and 869T/C polymorphisms on glioma patient survival was evaluated by a Cox regression model adjusted for patients' age and sex and represented in Kaplan-Meier curves. Our results demonstrated that TGF-ß1 gene polymorphisms -509C/T and 869T/C are not significantly associated with glioma risk. Survival analyses showed that the homozygous -509TT genotype associates with longer overall survival of glioblastoma (GBM) patients when compared with patients carrying CC + CT genotypes (OR, 2.41; 95 % CI, 1.06-5.50; p = 0.036). In addition, the homozygous 869CC genotype is associated with increased overall survival of GBM patients when compared with 869TT + TC genotypes (OR, 2.62; 95 % CI, 1.11-6.17; p = 0.027). In conclusion, this study suggests that TGF-ß1 -509C/T and 869T/C polymorphisms are not significantly associated with risk for developing gliomas but may be relevant prognostic biomarkers in GBM patients.


Subject(s)
Biomarkers, Tumor/genetics , Glioblastoma/genetics , Glioma/genetics , Transforming Growth Factor beta1/genetics , Adult , Aged , Case-Control Studies , Female , Genetic Association Studies , Genetic Predisposition to Disease , Genotype , Glioblastoma/pathology , Glioma/epidemiology , Glioma/pathology , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Polymorphism, Single Nucleotide , Prognosis , Risk Factors
18.
J Transl Med ; 12: 118, 2014 May 09.
Article in English | MEDLINE | ID: mdl-24885736

ABSTRACT

BACKGROUND: Soft tissue sarcomas (STSs) are a group of neoplasms, which, despite current therapeutic advances, still confer a poor outcome to half of the patients. As other solid tumors, STSs exhibit high glucose consumption rates, associated with worse prognosis and therapeutic response. As highly glycolytic tumors, we hypothesized that sarcomas should present an increased expression of lactate transporters (MCTs). METHODS: Immunohistochemical expression of MCT1, MCT2, MCT4 and CD147 was assessed in a series of 86 STSs and the expression profiles were associated with patients' clinical-pathological parameters. RESULTS: MCT1, MCT4 and CD147 were mainly observed in the plasma membrane of cancer cells (around 60% for MCTs and 40% for CD147), while MCT2 was conspicuously found in the cytoplasm (94.2%). Importantly, we observed MCT1 nuclear expression (32.6%). MCT1 and MCT4, alone or co-expressed with CD147 in the plasma membrane, were associated with poor prognostic variables including high tumor grade, disease progression and shorter overall survival. Conversely, we found MCT1 nuclear expression to be associated with low grade tumors and longer overall survival. CONCLUSIONS: The present work represents the first report of MCTs characterization in STSs. We showed the original finding of MCT1 expression in the nucleus. Importantly, opposite biological roles should be behind the dual sub-cellular localization of MCT1, as plasma membrane expression of MCT1 is associated with worse patients' prognosis, while nuclear expression is associated with better prognosis.


Subject(s)
Monocarboxylic Acid Transporters/metabolism , Sarcoma/metabolism , Subcellular Fractions/metabolism , Humans , Prognosis , Sarcoma/physiopathology , Survival Rate
19.
Cancers (Basel) ; 16(12)2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38927888

ABSTRACT

Raf Kinase Inhibitor Protein (RKIP) is recognized as a bona fide tumor suppressor gene, and its diminished expression or loss is associated with the progression and poor prognosis of various solid tumors. It exerts multifaceted roles in carcinogenesis by modulating diverse intracellular signaling pathways, including those governed by HER receptors such as MAPK. Given the significance of HER receptor overexpression in numerous tumor types, we investigated the potential oncogenic relationship between RKIP and HER receptors in solid tumors. Through a comprehensive in silico analysis of 30 TCGA PanCancer Atlas studies encompassing solid tumors (10,719 samples), we uncovered compelling evidence of an inverse correlation between RKIP and EGFR expression in solid tumors observed in 25 out of 30 studies. Conversely, a predominantly positive association was noted for the other HER receptors (ERBB2, ERBB3, and ERBB4). In particular, cervical cancer (CC) emerged as a tumor type exhibiting a robust inverse association between RKIP and EGFR expression, a finding that was further validated in a cohort of 202 patient samples. Subsequent in vitro experiments involving pharmacological and genetic modulation of EGFR and RKIP showed that RKIP depletion led to significant upregulation of EGFR mRNA levels and induction of EGFR phosphorylation. Conversely, EGFR overactivation decreased RKIP expression in CC cell lines. Additionally, we identified a common molecular signature among patients depicting low RKIP and high EGFR expression and demonstrated the prognostic value of this inverse correlation in CC patients. In conclusion, our findings reveal an inverse association between RKIP and EGFR expression across various solid tumors, shedding new light on the underlying molecular mechanisms contributing to the aggressive phenotype associated with RKIP and EGFR in cervical cancer.

20.
Gastroenterology ; 142(4): 886-896.e9, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22240480

ABSTRACT

BACKGROUND & AIMS: MicroRNAs (miRNAs) can promote or inhibit tumor growth and are therefore being developed as targets for cancer therapies. They are diverse not only in the messenger RNAs (mRNA) they target, but in their production; the same hairpin RNA structure can generate mature products from each strand, termed 5p and 3p, that can bind different mRNAs. We analyzed the expression, functions, and mechanisms of miR-28-5p and miR-28-3p in colorectal cancer (CRC) cells. METHODS: We measured levels of miR-28-5p and miR-28-3p expression in 108 CRC and 49 normal colorectal samples (47 paired) by reverse transcription, quantitative real-time polymerase chain reaction. The roles of miR-28 in CRC development were studied using cultured HCT116, RKO, and SW480 cells and tumor xenograft analyses in immunodeficient mice; their mRNA targets were also investigated. RESULTS: miR-28-5p and miR-28-3p were down-regulated in CRC samples compared with normal colon samples. Overexpression of miRNAs in CRC cells had different effects and the miRNAs interacted with different mRNAs: miR-28-5p altered expression of CCND1 and HOXB3, whereas miR-28-3p bound NM23-H1. Overexpression of miR-28-5p reduced CRC cell proliferation, migration, and invasion in vitro, whereas miR-28-3p increased CRC cell migration and invasion in vitro. CRC cells overexpressing miR-28 developed tumors more slowly in mice compared with control cells, but miR-28 promoted tumor metastasis in mice. CONCLUSION: miR-28-5p and miR-28-3p are transcribed from the same RNA hairpin and are down-regulated in CRC cells. Overexpression of each has different effects on CRC cell proliferation and migration. Such information has a direct application for the design of miRNA gene therapy trials.


Subject(s)
Colorectal Neoplasms/therapy , Genetic Therapy , MicroRNAs/metabolism , Animals , Apoptosis , Case-Control Studies , Cell Movement , Cell Proliferation , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Cyclin D1/genetics , Cyclin D1/metabolism , G1 Phase Cell Cycle Checkpoints , Gene Expression Regulation, Neoplastic , HCT116 Cells , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Mice , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , NM23 Nucleoside Diphosphate Kinases/genetics , NM23 Nucleoside Diphosphate Kinases/metabolism , Neoplasm Invasiveness , RNA Interference , Real-Time Polymerase Chain Reaction , Receptors, Interleukin-2/deficiency , Receptors, Interleukin-2/genetics , Reverse Transcriptase Polymerase Chain Reaction , Time Factors , Transfection , Tumor Burden , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL