Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
J Sep Sci ; 44(14): 2705-2716, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33951745

ABSTRACT

Kava, the rhizomes and roots of Piper methysticum Forst, is a popular edible medicinal herb traditionally used to prepare beverages for anxiety reduction. Since the German kava ban has been lifted by the court, the quality evaluation is particularly important for its application, especially the flavokawains which were believed to be responsible for hepatotoxicity. Now, by employing two different standard references and four different methods to calculate the relative correction factors, eight different quantitative analyses of multicomponents by single-marker methods have been developed for the simultaneous determination of eight major kavalactones and flavokawains in kava. The low standard method difference on quantitative measurement of the compounds among the external standard method and ours confirmed the reliability of the mentioned methods. A radar plot clearly illustrated that the contents of dihydrokavain and kavain were higher, whereas flavokawains A and B were lower in different kava samples. Only one of eight samples did not detect flavokawains that may be related to hepatotoxicity. In summary, by using different agents as an internal standard reference, the developed methods were believed as a powerful analytical tool not only for the qualitative and quantitative of kava constituents but also for the other multicomponents when authentic standard substances were unavailable.


Subject(s)
Chalcone/analogs & derivatives , Kava/chemistry , Pyrones , Chalcone/analysis , Chalcone/chemistry , Chromatography, High Pressure Liquid/methods , Dietary Supplements , Lactones/analysis , Lactones/chemistry , Phytotherapy , Plant Extracts/analysis , Plant Extracts/chemistry , Plant Roots/chemistry , Plants, Medicinal , Pyrones/analysis , Pyrones/chemistry
2.
Molecules ; 26(17)2021 Sep 03.
Article in English | MEDLINE | ID: mdl-34500806

ABSTRACT

Given the standard substances of zeaxanthin and its homologues obtained from Lycium barbarum L. (LB) are extremely scarce and unstable, a novel quantitative analysis of carotenoids by single marker method, named QAMS, was established. Four carotenoids including lutein, zeaxanthin, ß-carotene, and zeaxanthin dipalmitate were determined simultaneously by employing trans-ß-apo-8'-carotenal, a carotenoid component which did not exist in LB, as standard reference. Meanwhile, ß-carotene, another carotenoid constituent which existed in LB, was determined as contrast. The QAMS methods were fully verified and exhibited low standard method difference with the external standard method (ESM), evidenced by the contents of four carotenoids in 34 batches of LB samples determined using ESM and QAMS methods, respectively. HCA, PCA, and OPLS-DA analysis disclosed that LB samples could be clearly differentiated into two groups: one contained LB samples collected from Ningxia and Gansu; the other was from Qinghai, which was directly related to the different geographical location. Once exposed under high humidity (RH 75 ± 5%) at a high temperature (45 ± 5 °C) as compared with ambient temperature (25 ± 5 °C), from day 0 to day 28, zeaxanthin dipalmitate content was significantly decreased, and ultimately, all the decrease rates reached about 80%, regardless of the storage condition. Our results provide a good basis for improving the quality control of LB.


Subject(s)
Carotenoids/analysis , Lycium/chemistry , Chromatography, High Pressure Liquid , Mass Spectrometry
3.
Molecules ; 26(20)2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34684830

ABSTRACT

Gynostemma pentaphyllum (Thunb.) Makino (GP), also named Jiaogulan in Chinese, was known to people for its function in both health care and disease treatment. Initially and traditionally, GP was a kind of tea consumed by people for its pleasant taste and weight loss efficacy. With the passing of the centuries, GP became well known as more than just a tea. Until now, numbers of bioactive compounds, including saponins (also named gypenosides, GPS), polysaccharides (GPP), flavonoids, and phytosterols were isolated and identified in GP, which implied the great medicinal worth of this unusual tea. Both in vivo and in vitro tests, ranging from different cell lines to animals, indicated that GP possessed various biological activities including anti-cancer, anti-atherogenic, anti-dementia, and anti-Parkinson's diseases, and it also had lipid-regulating effects as well as neuroprotection, hepatoprotective, and hypoglycemic properties. With the further development and utilization of GP, the research on the chemical constituents and pharmacological properties of GP were deepening day by day and had made great progress. In this review, the recent research progress in the bioactive compounds, especially gypenosides, and the pharmacological activities of GP were summarized, which will be quite useful for practical applications of GP in the treatment of human diseases.


Subject(s)
Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Gynostemma/chemistry , Plants, Medicinal/chemistry , Animals , Flavonoids/isolation & purification , Flavonoids/pharmacology , Gastrointestinal Microbiome/drug effects , Humans , In Vitro Techniques , Molecular Structure , Phytosterols/isolation & purification , Phytosterols/pharmacology , Phytotherapy , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , Polysaccharides/isolation & purification , Polysaccharides/pharmacology , Saponins/isolation & purification , Saponins/pharmacology , Structure-Activity Relationship
4.
Oxid Med Cell Longev ; 2022: 7319563, 2022.
Article in English | MEDLINE | ID: mdl-35578728

ABSTRACT

As a traditional Chinese medicine formula, Mi-Jian-Chang-Pu decoction (MJCPD) has been successfully used in patients with language dysfunction and hemiplegia after ischemic stroke (IS). Given the excellent protective effects of MJCPD against nerve damage caused by IS in clinical settings, the present investigation mainly focused on its underlying mechanism on ischemia-reperfusion (IR) injury. Firstly, by applying the MCAO-induced cerebral IR injury rats, the efficacy of MJCPD on IS was estimated using the neurological deficit score, TTC, HE, and IHC staining, and neurochemical measurements. Secondly, an UHPLC-QTOF-MS/MS-based nontargeted metabolomics was developed to elucidate the characteristic metabolites. MJCPD groups showed significant improvements in the neurological score, infarction volume, and histomorphology, and the changes of GSH, GSSG, GSH-PX, GSSG/GSH, LDH, L-LA, IL-6, TNF-α, and VEGF-c were also reversed to normal levels after the intervention compared to the MCAO model group. Metabolomics profiling identified 21 different metabolites in the model group vs. the sham group, 10 of which were significantly recovered after treatment of MJCPD, and those 10 metabolites were all related to the oxidative stress process including glucose, fatty acid, amino acid, glutamine, and phospholipid metabolisms. Therefore, MJCPD might protect against IS by inhibiting oxidative stress during IR.


Subject(s)
Brain Ischemia , Ischemic Stroke , Reperfusion Injury , Animals , Brain Ischemia/drug therapy , Glutathione Disulfide , Humans , Rats , Rats, Sprague-Dawley , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Tandem Mass Spectrometry
5.
J Ethnopharmacol ; 285: 114882, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34848358

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: To explore the effective components, potential targets and neuroprotective related mechanisms of Mijianchangpu decoction (MJCPD), a well-known TCM used by the Chinese Hui minorities to treat stroke, on the prevention and treatment of ischemic stroke (IS) by using experimental models combined with network pharmacology. MATERIALS AND METHODS: The neuroprotective efficacy of MJCPD was estimated by applying the middle cerebral artery occlusion (MCAO) induced cerebral ischemia rats, and the neurological deficits score, TTC and HE staining as well as behavioral evaluation tests were employed to evaluate the beneficial effects. Meanwhile, the bioactive components of MJCPD responsible for the neuroprotective effects were identified by detecting the constituents in the brain of the MCAO rats with UHPLC-QTOF-MS/MS techniques, and these compounds were then underwent for network pharmacology analysis. Firstly, the targets of the bioactive compounds of MJCPD were predicted using Pharmmapper database, and simultaneously, the targets of IS disease were obtained from disease databases including DisGenet, OMIM, and GeneCards. Secondly, the protein-protein interaction (PPI) network between the targets and diseases were established to give the possible therapeutic targets for IS. Thirdly, the go function and KEGG pathway enrichment analysis were carried out and the compound-target-pathway network was constructed by Cytoscape software. Finally, the effective compounds, core targets and possible pathways were obtained by analyzing the connectivity of the network. More importantly, the core targets were verified by western blot experiments to validate the reliability of this study. RESULTS: MJCPD exhibited significant neuroprotective effect on IS, and 16 bioactive components of MJCPD were identified in the brain of the MCAO rats. 59 and 1982 targets related with IS disease were explored from Pharmapper and disease databases, respectively, and 32 intersecting targets were obtained as hypothetical therapeutic targets. Based on the results of the compound-target-pathway and PPI network with the degree was greater than the median, 8 effective compounds (suberic acid, epishyobunone, crocetin monomethyl ester, sfaranal, (Z)-6-octadccenoic acid, nerolidol and gurjunene) and 5 hub targets (SRC, MAPK8, MAPK14, EGFR and MAPK1) as well as 12 pathways were predicted. Western blot results showed that EGFR, p38, ERK and SRC proteins were expressed significantly different after MJCPD treatment as compared with the model group. CONCLUSION: The present study employed network pharmacology, pharmacodynamics and molecular biology techniques to predict and validate the core potential targets and signaling pathways as well as the bioactive components of MJCPD responsible for the treatment of IS. All of which are very helpful to clarify the neuroprotective mechanism of MJCPD, and obviously, the active compounds and targets in this study can also provide clues for the treatment of IS.


Subject(s)
Brain Ischemia , Drugs, Chinese Herbal , Network Pharmacology , Phytotherapy , Stroke , Animals , Male , Brain Ischemia/drug therapy , Drugs, Chinese Herbal/pharmacology , Gene Expression Regulation/drug effects , Infarction, Middle Cerebral Artery , Nimodipine , Rats, Sprague-Dawley , Specific Pathogen-Free Organisms , Stroke/drug therapy , Stroke/pathology
6.
Phytomedicine ; 106: 154399, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36057143

ABSTRACT

BACKGROUND: 6-acetylacteoside (6-AA) is a phenylethanoid glycoside isolated from Cistanche deserticola which had been previously proven to possess anti-osteoporotic activity previously. Currently, it is still unknown whether 6-AA plays a crucial role on the anti-osteoporotic effects of C. deserticola. PURPOSE: To elucidate the therapeutic effect and mechanism of 6-AA on osteoporosis by employing an ovariectomized mouse model in vivo and RAW264.7 cells in vitro. METHODS: Sixty female ICR mice were randomly assigned into six groups: sham-operated control group (SHAM, vehicle), ovariectomized model group (OVX, vehicle), positive group (EV, 1 mg/kg/day of estradiol valerate), low dosage (10 mg/kg/day of 6-AA), medium dosage (20 mg/kg/day of 6-AA) and high dosage (40 mg/kg/day of 6-AA) treatment groups. All substances were administered daily by intragastric gavage. After 12 weeks of intervention, trabecular bone microarchitecture was estimated and bone biomechanics were determined. Bone formation and resorption factors were determined by using the corresponding Elisa kits. The related proteins and metabolites were estimated by using western-blot and metabolomics techniques. RESULTS: OVX mice demonstrated significant atrophy of the uterine and vagina, declined biomechanical parameters such as flexural strength and maximum load, deteriorated trabecular bone microarchitecture such as decreased BMD, BMC, TMC, TMD, BVF, Tb. N, and Tb. Th and increased Tb. Sp, as well as increased bone resorption factors such as TRAP, cathepsin K, and DPD, all after 12 weeks of ovariectomy operation. Following administration of 6-AA to OVX mice, parameters related to the bone microarchitecture, bone resorption activities as well as biomechanical properties were all significantly improved. Meanwhile, the levels of NF-κB, NFATc1, RANK, RANKL and TRAF6 were significantly downregulated, while OPG, PI3K and AKT were upregulated after 6-AA intervention. This indicates that, 6-AA could prevent bone resorption by regulating the RANKL/RANK/OPG mediated NF-κB and PI3K/AKT pathways. Furthermore, 26 different metabolites corresponding to 25 metabolic pathways were identified, and 5 of which were related to the formation of osteoporosis. Interestingly, 23 abnormal metabolites were recovered after 6-AA treatment. CONCLUSION: Our results revealed the significant anti-osteoporotic effects of 6-AA on ovariectomized mice which were probably exerted via suppression of osteoclast formation and bone resorption.


Subject(s)
Bone Resorption , Osteoporosis , Animals , Female , Mice , Bone Density , Bone Resorption/drug therapy , Bone Resorption/metabolism , Cathepsin K/metabolism , Estradiol/pharmacology , Glycosides/pharmacology , Glycosides/therapeutic use , Mice, Inbred ICR , NF-kappa B/metabolism , Osteoporosis/drug therapy , Osteoporosis/etiology , Osteoporosis/metabolism , Ovariectomy/adverse effects , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RANK Ligand/metabolism , TNF Receptor-Associated Factor 6/metabolism
7.
Article in English | MEDLINE | ID: mdl-35942381

ABSTRACT

Chronic kidney disease, including renal failure (RF), is a global public health problem. The clinical diagnosis mainly depends on the change of estimated glomerular filtration rate, which usually lags behind disease progression and likely has limited clinical utility for the early detection of this health problem. Now, we employed Q-Exactive HFX Orbitrap LC-MS/MS based metabolomics to reveal the metabolic profile and potential biomarkers for RF screening. 27 RF patients and 27 healthy controls were included as the testing groups, and comparative analysis of results using different techniques, such as multivariate pattern recognition and univariate statistical analysis, was applied to screen and elucidate the differential metabolites. The dot plots and receiver operating characteristics curves of identified different metabolites were established to discover the potential biomarkers of RF. The results exhibited a clear separation between the two groups, and a total of 216 different metabolites corresponding to 13 metabolic pathways were discovered to be associated with RF; and 44 metabolites showed high levels of sensitivity and specificity under curve values of close to 1, thus might be used as serum biomarkers for RF. In summary, for the first time, our untargeted metabolomics study revealed the distinct metabolic profile of RF, and 44 metabolites with high sensitivity and specificity were discovered, 3 of which have been reported and were consistent with our observations. The other metabolites were first reported by us. Our findings might provide a feasible diagnostic tool for identifying populations at risk for RF through detection of serum metabolites.

8.
Article in English | MEDLINE | ID: mdl-34471418

ABSTRACT

Kava (Piper methysticum Forst) is a popular and favorable edible medicinal herb which was traditionally used to prepare a nonfermented beverage with relaxant beneficial for both social and recreational purposes. Numerous studies conducted on kava have confirmed the presence of kavalactones and flavokawains, two major groups of bioactive ingredients, in this miraculous natural plant. Expectedly, both kavalactone and flavokawain components exhibited potent antianxiety and anticancer activities, and their structure-activity relationships were also revealed. However, dozens of clinical data revealed the hepatotoxicity effect which is indirectly or directly associated with kava consumption, and most of the evidence currently seems to point the compounds of flavokawains in kava were responsible. Therefore, our aim is to conduct a systematic review of kavalactones and flavokawains in kava including their biological activities, structure-activity relationships, and toxicities, and as a result of our systematic investigations, suggestions on kava and its compounds are supplied for future research.

9.
RSC Adv ; 10(73): 44654-44671, 2020 Dec 17.
Article in English | MEDLINE | ID: mdl-35516250

ABSTRACT

Sea buckthorn (SB), also named sea berry, Hippophae rhamnoides L. or Elaeagnus rhamnoides L., has been used in daily life for centuries with kinds of purposes ranging from a beverage with a pleasant taste and flavor, to an agent for treatment of many disorders and diseases. SB is well known more than just a fruit. So far, a unique mixture of bioactive components was elucidated in SB including flavonoids, phenolic acids, proanthocyanidins, carotenoids, fatty acids, triterpenoids, vitamins and phytosterols, which implied the great medicinal worth of this seaberry. Both in vitro and in vivo experiments, ranged from cell lines to animals as well as a few in patients and healthy volunteers, indicated that SB possessed various biological activities including anti-inflammatory and immunomodulatory effects, antioxidant properties, anti-cancer activities, hepato-protection, cardiovascular-protection, neuroprotection, radioprotection, skin protection effect as well as the protective effect against some eye and gastrointestinal sickness. Furthermore, the toxicological results revealed neither the fruits, nor the seeds of SB were toxic. The present review summarizes the unique profile of the chemical compounds, the nutritional and health effects as well as the toxicological properties of SB, which lay the foundation for practical applications of SB in treatment of human diseases.

SELECTION OF CITATIONS
SEARCH DETAIL