Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 255
Filter
1.
Cell ; 183(3): 591-593, 2020 10 29.
Article in English | MEDLINE | ID: mdl-33125888

ABSTRACT

Targeting cancer neoantigens generated by tumor-exclusive somatic mutations is an attractive yet challenging strategy for the robust and specific elimination of tumor cells by cellular immunotherapy. In this issue of Cell, Wells et al. describe a consortium-based approach to optimize bioinformatics pipelines to sensitively and accurately predict immunogenic neoantigens from next-generation sequencing data.


Subject(s)
Antigens, Neoplasm , Neoplasms , Antigens, Neoplasm/genetics , Epitopes , High-Throughput Nucleotide Sequencing , Humans , Immunotherapy , Neoplasms/genetics , Neoplasms/therapy
2.
Cell ; 178(5): 1088-1101.e15, 2019 08 22.
Article in English | MEDLINE | ID: mdl-31442402

ABSTRACT

Mammals evolved in the face of fluctuating food availability. How the immune system adapts to transient nutritional stress remains poorly understood. Here, we show that memory T cells collapsed in secondary lymphoid organs in the context of dietary restriction (DR) but dramatically accumulated within the bone marrow (BM), where they adopted a state associated with energy conservation. This response was coordinated by glucocorticoids and associated with a profound remodeling of the BM compartment, which included an increase in T cell homing factors, erythropoiesis, and adipogenesis. Adipocytes, as well as CXCR4-CXCL12 and S1P-S1P1R interactions, contributed to enhanced T cell accumulation in BM during DR. Memory T cell homing to BM during DR was associated with enhanced protection against infections and tumors. Together, this work uncovers a fundamental host strategy to sustain and optimize immunological memory during nutritional challenges that involved a temporal and spatial reorganization of the memory pool within "safe haven" compartments.


Subject(s)
Bone Marrow/metabolism , Immunologic Memory , Animals , Bone Marrow/immunology , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Caloric Restriction/veterinary , Cell Line, Tumor , Chemokine CXCL12/metabolism , Diet, Reducing/veterinary , Energy Metabolism , Gene Expression Regulation , Glucocorticoids , Melanoma, Experimental/mortality , Melanoma, Experimental/pathology , Mice , Mice, Inbred C57BL , Proto-Oncogene Proteins c-akt/metabolism , Receptors, CXCR4/metabolism , Survival Rate , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , TOR Serine-Threonine Kinases/metabolism
3.
Cell ; 175(7): 1780-1795.e19, 2018 12 13.
Article in English | MEDLINE | ID: mdl-30392958

ABSTRACT

Activated T cells differentiate into functional subsets with distinct metabolic programs. Glutaminase (GLS) converts glutamine to glutamate to support the tricarboxylic acid cycle and redox and epigenetic reactions. Here, we identify a key role for GLS in T cell activation and specification. Though GLS deficiency diminished initial T cell activation and proliferation and impaired differentiation of Th17 cells, loss of GLS also increased Tbet to promote differentiation and effector function of CD4 Th1 and CD8 CTL cells. This was associated with altered chromatin accessibility and gene expression, including decreased PIK3IP1 in Th1 cells that sensitized to IL-2-mediated mTORC1 signaling. In vivo, GLS null T cells failed to drive Th17-inflammatory diseases, and Th1 cells had initially elevated function but exhausted over time. Transient GLS inhibition, however, led to increased Th1 and CTL T cell numbers. Glutamine metabolism thus has distinct roles to promote Th17 but constrain Th1 and CTL effector cell differentiation.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Cell Differentiation/immunology , Glutaminase/immunology , Lymphocyte Activation , Th1 Cells/immunology , Th17 Cells/immunology , Animals , CD8-Positive T-Lymphocytes/cytology , Cell Differentiation/genetics , Glutaminase/genetics , Male , Mice , Mice, Transgenic , Th1 Cells/cytology , Th17 Cells/cytology
4.
Nat Immunol ; 20(3): 337-349, 2019 03.
Article in English | MEDLINE | ID: mdl-30778251

ABSTRACT

Stem cells are maintained by transcriptional programs that promote self-renewal and repress differentiation. Here, we found that the transcription factor c-Myb was essential for generating and maintaining stem cells in the CD8+ T cell memory compartment. Following viral infection, CD8+ T cells lacking Myb underwent terminal differentiation and generated fewer stem cell-like central memory cells than did Myb-sufficient T cells. c-Myb acted both as a transcriptional activator of Tcf7 (which encodes the transcription factor Tcf1) to enhance memory development and as a repressor of Zeb2 (which encodes the transcription factor Zeb2) to hinder effector differentiation. Domain-mutagenesis experiments revealed that the transactivation domain of c-Myb was necessary for restraining differentiation, whereas its negative regulatory domain was critical for cell survival. Myb overexpression enhanced CD8+ T cell memory formation, polyfunctionality and recall responses that promoted curative antitumor immunity after adoptive transfer. These findings identify c-Myb as a pivotal regulator of CD8+ T cell stemness and highlight its therapeutic potential.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Immunologic Memory/immunology , Neoplasms, Experimental/immunology , Proto-Oncogene Proteins c-myb/immunology , Stem Cells/immunology , Animals , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/virology , Cell Differentiation/immunology , Cell Line, Tumor , HEK293 Cells , Humans , Immunologic Memory/genetics , Lymphocytic Choriomeningitis/immunology , Lymphocytic Choriomeningitis/metabolism , Lymphocytic Choriomeningitis/virology , Lymphocytic choriomeningitis virus/immunology , Lymphocytic choriomeningitis virus/physiology , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/virology , Proto-Oncogene Proteins c-myb/genetics , Proto-Oncogene Proteins c-myb/metabolism , Stem Cells/metabolism , Stem Cells/virology , T Cell Transcription Factor 1/genetics , T Cell Transcription Factor 1/immunology , T Cell Transcription Factor 1/metabolism
5.
Cell ; 167(2): 304-306, 2016 Oct 06.
Article in English | MEDLINE | ID: mdl-27716501

ABSTRACT

Adoptive immunotherapy using receptor engineering to achieve specific tumor targeting by T cells holds much promise for advancing cancer therapy. Here, two studies by Boice et al. and Roybal et al. provide distinct and potentially complimentary approaches to improve the efficacy and curb potential toxicities of this approach.


Subject(s)
Immunotherapy, Adoptive , Receptors, Antigen, T-Cell , Humans , Neoplasms/therapy , T-Lymphocytes
6.
Cell ; 166(5): 1117-1131.e14, 2016 Aug 25.
Article in English | MEDLINE | ID: mdl-27565342

ABSTRACT

Cancer cells must evade immune responses at distant sites to establish metastases. The lung is a frequent site for metastasis. We hypothesized that lung-specific immunoregulatory mechanisms create an immunologically permissive environment for tumor colonization. We found that T-cell-intrinsic expression of the oxygen-sensing prolyl-hydroxylase (PHD) proteins is required to maintain local tolerance against innocuous antigens in the lung but powerfully licenses colonization by circulating tumor cells. PHD proteins limit pulmonary type helper (Th)-1 responses, promote CD4(+)-regulatory T (Treg) cell induction, and restrain CD8(+) T cell effector function. Tumor colonization is accompanied by PHD-protein-dependent induction of pulmonary Treg cells and suppression of IFN-γ-dependent tumor clearance. T-cell-intrinsic deletion or pharmacological inhibition of PHD proteins limits tumor colonization of the lung and improves the efficacy of adoptive cell transfer immunotherapy. Collectively, PHD proteins function in T cells to coordinate distinct immunoregulatory programs within the lung that are permissive to cancer metastasis. PAPERCLIP.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Lung Neoplasms/immunology , Lung Neoplasms/secondary , Lung/immunology , Oxygen/metabolism , Prolyl Hydroxylases/metabolism , T-Lymphocytes, Regulatory/immunology , Adoptive Transfer , Animals , CD8-Positive T-Lymphocytes/enzymology , Glycolysis/immunology , Interferon-gamma/immunology , Lung/pathology , Lung Neoplasms/therapy , Lymphocyte Activation , Mice , Mice, Knockout , Neoplasm Metastasis , Neuropilin-1/metabolism , Prolyl Hydroxylases/genetics , T-Lymphocytes, Regulatory/enzymology , Th1 Cells/enzymology , Th1 Cells/immunology
7.
Immunity ; 54(1): 116-131.e10, 2021 01 12.
Article in English | MEDLINE | ID: mdl-33271120

ABSTRACT

Tumors frequently subvert major histocompatibility complex class I (MHC-I) peptide presentation to evade CD8+ T cell immunosurveillance, though how this is accomplished is not always well defined. To identify the global regulatory networks controlling antigen presentation, we employed genome-wide screening in human diffuse large B cell lymphomas (DLBCLs). This approach revealed dozens of genes that positively and negatively modulate MHC-I cell surface expression. Validated genes clustered in multiple pathways including cytokine signaling, mRNA processing, endosomal trafficking, and protein metabolism. Genes can exhibit lymphoma subtype- or tumor-specific MHC-I regulation, and a majority of primary DLBCL tumors displayed genetic alterations in multiple regulators. We established SUGT1 as a major positive regulator of both MHC-I and MHC-II cell surface expression. Further, pharmacological inhibition of two negative regulators of antigen presentation, EZH2 and thymidylate synthase, enhanced DLBCL MHC-I presentation. These and other genes represent potential targets for manipulating MHC-I immunosurveillance in cancers, infectious diseases, and autoimmunity.


Subject(s)
B-Lymphocytes/physiology , Biomarkers, Tumor/genetics , HLA Antigens/genetics , Histocompatibility Antigens Class II/genetics , Histocompatibility Antigens Class I/genetics , Lymphoma, Large B-Cell, Diffuse/genetics , Carcinogenesis/genetics , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Differentiation , Cell Line, Tumor , Cell Lineage , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , Gene Expression Regulation, Neoplastic , Genetic Testing , Genome-Wide Association Study , HLA Antigens/metabolism , Humans , Immunologic Surveillance , Lymphoma, Large B-Cell, Diffuse/metabolism , Tumor Escape/genetics
8.
Cell ; 162(6): 1206-8, 2015 Sep 10.
Article in English | MEDLINE | ID: mdl-26359979

ABSTRACT

It is thought that cancer cells engage in Warburg metabolism to meet intrinsic biosynthetic requirements of cell growth and proliferation. Papers by Chang et al. and Ho et al. show that Warburg metabolism enables tumor cells to restrict glucose availability to T cells, suppressing anti-tumor immunity.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Glycolysis , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Melanoma/immunology , Melanoma/therapy , Monitoring, Immunologic , Neoplasms/metabolism , Phosphoenolpyruvate/metabolism , Tumor Microenvironment , Animals
9.
Nat Immunol ; 18(7): 813-823, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28530713

ABSTRACT

The transcriptional programs that guide lymphocyte differentiation depend on the precise expression and timing of transcription factors (TFs). The TF BACH2 is essential for T and B lymphocytes and is associated with an archetypal super-enhancer (SE). Single-nucleotide variants in the BACH2 locus are associated with several autoimmune diseases, but BACH2 mutations that cause Mendelian monogenic primary immunodeficiency have not previously been identified. Here we describe a syndrome of BACH2-related immunodeficiency and autoimmunity (BRIDA) that results from BACH2 haploinsufficiency. Affected subjects had lymphocyte-maturation defects that caused immunoglobulin deficiency and intestinal inflammation. The mutations disrupted protein stability by interfering with homodimerization or by causing aggregation. We observed analogous lymphocyte defects in Bach2-heterozygous mice. More generally, we observed that genes that cause monogenic haploinsufficient diseases were substantially enriched for TFs and SE architecture. These findings reveal a previously unrecognized feature of SE architecture in Mendelian diseases of immunity: heterozygous mutations in SE-regulated genes identified by whole-exome/genome sequencing may have greater significance than previously recognized.


Subject(s)
Autoimmune Diseases/genetics , Basic-Leucine Zipper Transcription Factors/genetics , Immunologic Deficiency Syndromes/genetics , Adrenal Cortex Hormones/therapeutic use , Adult , Autoimmune Diseases/complications , Colitis/complications , Colitis/genetics , Colitis/pathology , Female , Fever/complications , Fever/drug therapy , Fever/genetics , Haploinsufficiency , Heterozygote , Humans , Immunologic Deficiency Syndromes/complications , Lymphopenia/complications , Lymphopenia/genetics , Male , Middle Aged , Mutation , Pancytopenia/complications , Pancytopenia/drug therapy , Pancytopenia/genetics , Pedigree , Polymorphism, Single Nucleotide , Recurrence , Respiratory Tract Infections/complications , Respiratory Tract Infections/diagnostic imaging , Respiratory Tract Infections/genetics , Splenomegaly/complications , Splenomegaly/genetics , Syndrome , Tomography, X-Ray Computed , Young Adult
10.
Nat Immunol ; 17(7): 851-860, 2016 07.
Article in English | MEDLINE | ID: mdl-27158840

ABSTRACT

T cell antigen receptor (TCR) signaling drives distinct responses depending on the differentiation state and context of CD8(+) T cells. We hypothesized that access of signal-dependent transcription factors (TFs) to enhancers is dynamically regulated to shape transcriptional responses to TCR signaling. We found that the TF BACH2 restrains terminal differentiation to enable generation of long-lived memory cells and protective immunity after viral infection. BACH2 was recruited to enhancers, where it limited expression of TCR-driven genes by attenuating the availability of activator protein-1 (AP-1) sites to Jun family signal-dependent TFs. In naive cells, this prevented TCR-driven induction of genes associated with terminal differentiation. Upon effector differentiation, reduced expression of BACH2 and its phosphorylation enabled unrestrained induction of TCR-driven effector programs.


Subject(s)
Basic-Leucine Zipper Transcription Factors/metabolism , CD8-Positive T-Lymphocytes/physiology , Transcription Factor AP-1/metabolism , Vaccinia virus/immunology , Vaccinia/immunology , Adaptive Immunity , Animals , Basic-Leucine Zipper Transcription Factors/genetics , CD8-Positive T-Lymphocytes/virology , Cell Differentiation/genetics , Cells, Cultured , Enhancer Elements, Genetic/genetics , Gene Expression Regulation , Immunologic Memory/genetics , Lymphocyte Activation/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Oncogene Protein p65(gag-jun) , Signal Transduction/genetics , Transcription Factor AP-1/genetics
11.
Nature ; 597(7877): 544-548, 2021 09.
Article in English | MEDLINE | ID: mdl-34526724

ABSTRACT

Adoptive transfer of antigen-specific T cells represents a major advance in cancer immunotherapy, with robust clinical outcomes in some patients1. Both the number of transferred T cells and their differentiation state are critical determinants of effective responses2,3. T cells can be expanded with T cell receptor (TCR)-mediated stimulation and interleukin-2, but this can lead to differentiation into effector T cells4,5 and lower therapeutic efficacy6, whereas maintenance of a more stem-cell-like state before adoptive transfer is beneficial7. Here we show that H9T, an engineered interleukin-2 partial agonist, promotes the expansion of CD8+ T cells without driving terminal differentiation. H9T led to altered STAT5 signalling and mediated distinctive downstream transcriptional, epigenetic and metabolic programs. In addition, H9T treatment sustained the expression of T cell transcription factor 1 (TCF-1) and promoted mitochondrial fitness, thereby facilitating the maintenance of a stem-cell-like state. Moreover, TCR-transgenic and chimeric antigen receptor-modified CD8+ T cells that were expanded with H9T showed robust anti-tumour activity in vivo in mouse models of melanoma and acute lymphoblastic leukaemia. Thus, engineering cytokine variants with distinctive properties is a promising strategy for creating new molecules with translational potential.


Subject(s)
CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/drug effects , Cell Differentiation/drug effects , Drug Partial Agonism , Interleukin-2/analogs & derivatives , Interleukin-2/agonists , Mutant Proteins/pharmacology , Stem Cells/drug effects , Animals , CD8-Positive T-Lymphocytes/immunology , Interleukin-2/chemistry , Interleukin-2/genetics , Melanoma/metabolism , Mice , Mitochondria/drug effects , Mutant Proteins/chemistry , Mutant Proteins/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism , STAT5 Transcription Factor/metabolism , Stem Cells/cytology , T Cell Transcription Factor 1/metabolism , Translational Research, Biomedical
12.
Mol Cell ; 73(6): 1162-1173.e5, 2019 03 21.
Article in English | MEDLINE | ID: mdl-30712990

ABSTRACT

The MHC class I antigen presentation system enables T cell immunosurveillance of cancers and viruses. A substantial fraction of the immunopeptidome derives from rapidly degraded nascent polypeptides (DRiPs). By knocking down each of the 80 ribosomal proteins, we identified proteins that modulate peptide generation without altering source protein expression. We show that 60S ribosomal proteins L6 (RPL6) and RPL28, which are adjacent on the ribosome, play opposite roles in generating an influenza A virus-encoded peptide. Depleting RPL6 decreases ubiquitin-dependent peptide presentation, whereas depleting RPL28 increases ubiquitin-dependent and -independent peptide presentation. 40S ribosomal protein S28 (RPS28) knockdown increases total peptide supply in uninfected cells by increasing DRiP synthesis from non-canonical translation of "untranslated" regions and non-AUG start codons and sensitizes tumor cells for T cell targeting. Our findings raise the possibility of modulating immunosurveillance by pharmaceutical targeting ribosomes.


Subject(s)
Antigen Presentation , Histocompatibility Antigens Class I/biosynthesis , Ribosomal Proteins/metabolism , Ribosome Subunits, Large, Eukaryotic/metabolism , Ribosome Subunits, Small, Eukaryotic/metabolism , T-Lymphocytes/metabolism , Animals , Cell Line, Tumor , Coculture Techniques , HEK293 Cells , Histocompatibility Antigens Class I/immunology , Host-Pathogen Interactions , Humans , Immunologic Surveillance , Influenza A virus/immunology , Influenza A virus/pathogenicity , Melanoma/immunology , Melanoma/metabolism , Mice, Inbred C57BL , Mice, Transgenic , Ribosomal Proteins/genetics , Ribosome Subunits, Large, Eukaryotic/genetics , Ribosome Subunits, Small, Eukaryotic/genetics , Skin Neoplasms/immunology , Skin Neoplasms/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/virology
13.
Nat Immunol ; 12(12): 1230-7, 2011 Nov 06.
Article in English | MEDLINE | ID: mdl-22057288

ABSTRACT

The transcriptional repressor Blimp-1 promotes the differentiation of CD8(+) T cells into short-lived effector cells (SLECs) that express the lectin-like receptor KLRG-1, but how it operates remains poorly defined. Here we show that Blimp-1 bound to and repressed the promoter of the gene encoding the DNA-binding inhibitor Id3 in SLECs. Repression of Id3 by Blimp-1 was dispensable for SLEC development but limited the ability of SLECs to persist as memory cells. Enforced expression of Id3 was sufficient to restore SLEC survival and enhanced recall responses. Id3 function was mediated in part through inhibition of the transcriptional activity of E2A and induction of genes regulating genome stability. Our findings identify the Blimp-1-Id3-E2A axis as a key molecular switch that determines whether effector CD8(+) T cells are programmed to die or enter the memory pool.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Immunologic Memory/immunology , Inhibitor of Differentiation Proteins/metabolism , Transcription Factors/metabolism , Animals , Basic Helix-Loop-Helix Transcription Factors/deficiency , Basic Helix-Loop-Helix Transcription Factors/genetics , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/metabolism , Cell Differentiation/genetics , Cell Line, Tumor , DNA Repair , DNA Replication , Female , Gene Expression Profiling , Gene Expression Regulation , Inhibitor of Differentiation Protein 2/metabolism , Inhibitor of Differentiation Proteins/genetics , Lectins, C-Type , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Positive Regulatory Domain I-Binding Factor 1 , Promoter Regions, Genetic , Receptors, Immunologic/metabolism
14.
Nature ; 548(7669): 537-542, 2017 08 31.
Article in English | MEDLINE | ID: mdl-28783722

ABSTRACT

Somatic gene mutations can alter the vulnerability of cancer cells to T-cell-based immunotherapies. Here we perturbed genes in human melanoma cells to mimic loss-of-function mutations involved in resistance to these therapies, by using a genome-scale CRISPR-Cas9 library that consisted of around 123,000 single-guide RNAs, and profiled genes whose loss in tumour cells impaired the effector function of CD8+ T cells. The genes that were most enriched in the screen have key roles in antigen presentation and interferon-γ signalling, and correlate with cytolytic activity in patient tumours from The Cancer Genome Atlas. Among the genes validated using different cancer cell lines and antigens, we identified multiple loss-of-function mutations in APLNR, encoding the apelin receptor, in patient tumours that were refractory to immunotherapy. We show that APLNR interacts with JAK1, modulating interferon-γ responses in tumours, and that its functional loss reduces the efficacy of adoptive cell transfer and checkpoint blockade immunotherapies in mouse models. Our results link the loss of essential genes for the effector function of CD8+ T cells with the resistance or non-responsiveness of cancer to immunotherapies.


Subject(s)
Genes, Essential/genetics , Immunotherapy , Neoplasms/genetics , Neoplasms/therapy , T-Lymphocytes, Cytotoxic/drug effects , T-Lymphocytes, Cytotoxic/immunology , Adoptive Transfer , Animals , Antigen Presentation/genetics , Apelin/metabolism , Apelin Receptors/genetics , Apelin Receptors/metabolism , CRISPR-Cas Systems/genetics , Cell Line, Tumor , Female , Genome/genetics , Histocompatibility Antigens Class I/immunology , Humans , Interferon-gamma/immunology , Janus Kinase 1/metabolism , Knowledge Bases , Melanoma/genetics , Melanoma/immunology , Melanoma/metabolism , Melanoma/therapy , Mice , Mutation , Neoplasms/immunology , Neoplasms/metabolism , Reproducibility of Results , T-Lymphocytes, Cytotoxic/metabolism
15.
Immunity ; 39(4): 631-2, 2013 Oct 17.
Article in English | MEDLINE | ID: mdl-24138879

ABSTRACT

Tumors are complex masses containing not just neoplastic cells but also stromal cells, neovasculature, and a gamut of immune cells. In this issue, Bindea et al. (2013) identify a surprising new "immune landscape" associated with prolonged disease-free survival.


Subject(s)
B-Lymphocytes/immunology , Carcinoma/immunology , Chemokine CXCL13/immunology , Colorectal Neoplasms/immunology , Interleukins/immunology , Neoplasm Recurrence, Local/immunology , T-Lymphocytes, Helper-Inducer/immunology , Animals , Humans
16.
Immunity ; 38(4): 742-53, 2013 Apr 18.
Article in English | MEDLINE | ID: mdl-23601686

ABSTRACT

MicroRNAs (miRNAs) regulate the function of several immune cells, but their role in promoting CD8(+) T cell immunity remains unknown. Here we report that miRNA-155 is required for CD8(+) T cell responses to both virus and cancer. In the absence of miRNA-155, accumulation of effector CD8(+) T cells was severely reduced during acute and chronic viral infections and control of virus replication was impaired. Similarly, Mir155(-/-) CD8(+) T cells were ineffective at controlling tumor growth, whereas miRNA-155 overexpression enhanced the antitumor response. miRNA-155 deficiency resulted in accumulation of suppressor of cytokine signaling-1 (SOCS-1) causing defective cytokine signaling through STAT5. Consistently, enforced expression of SOCS-1 in CD8(+) T cells phenocopied the miRNA-155 deficiency, whereas SOCS-1 silencing augmented tumor destruction. These findings identify miRNA-155 and its target SOCS-1 as key regulators of effector CD8(+) T cells that can be modulated to potentiate immunotherapies for infectious diseases and cancer.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Lymphocytic Choriomeningitis/immunology , Lymphocytic choriomeningitis virus/physiology , Melanoma, Experimental/immunology , MicroRNAs/metabolism , Adoptive Transfer , Animals , Apoptosis/genetics , Cell Proliferation , Cells, Cultured , Cytokines/metabolism , Cytotoxicity, Immunologic/genetics , Humans , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Transgenic , MicroRNAs/genetics , RNA, Small Interfering/genetics , STAT6 Transcription Factor/metabolism , Suppressor of Cytokine Signaling 1 Protein , Suppressor of Cytokine Signaling Proteins/metabolism , Virus Replication/genetics
17.
Nature ; 537(7621): 539-543, 2016 09 22.
Article in English | MEDLINE | ID: mdl-27626381

ABSTRACT

Tumours progress despite being infiltrated by tumour-specific effector T cells. Tumours contain areas of cellular necrosis, which are associated with poor survival in a variety of cancers. Here, we show that necrosis releases intracellular potassium ions into the extracellular fluid of mouse and human tumours, causing profound suppression of T cell effector function. Elevation of the extracellular potassium concentration ([K+]e) impairs T cell receptor (TCR)-driven Akt-mTOR phosphorylation and effector programmes. Potassium-mediated suppression of Akt-mTOR signalling and T cell function is dependent upon the activity of the serine/threonine phosphatase PP2A. Although the suppressive effect mediated by elevated [K+]e is independent of changes in plasma membrane potential (Vm), it requires an increase in intracellular potassium ([K+]i). Accordingly, augmenting potassium efflux in tumour-specific T cells by overexpressing the potassium channel Kv1.3 lowers [K+]i and improves effector functions in vitro and in vivo and enhances tumour clearance and survival in melanoma-bearing mice. These results uncover an ionic checkpoint that blocks T cell function in tumours and identify potential new strategies for cancer immunotherapy.


Subject(s)
Cations, Monovalent/metabolism , Melanoma/immunology , Potassium/metabolism , T-Lymphocytes/immunology , Tumor Escape/immunology , Tumor Microenvironment/immunology , Animals , Humans , Immune Tolerance/immunology , Immunotherapy/methods , Kv1.3 Potassium Channel/metabolism , Male , Melanoma/metabolism , Melanoma/pathology , Melanoma/therapy , Membrane Potentials , Mice , Necrosis , Proto-Oncogene Proteins c-akt/metabolism , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , Signal Transduction , Survival Analysis , T-Lymphocytes/metabolism , TOR Serine-Threonine Kinases/metabolism
18.
Cytotherapy ; 23(8): 704-714, 2021 08.
Article in English | MEDLINE | ID: mdl-33893050

ABSTRACT

BACKGROUND AIMS: Adoptive transfer of suppressive CD4+CD25+ thymic regulatory T cells (tTregs) can control auto- and alloimmune responses but typically requires in vitro expansion to reach the target cell number for efficacy. Although the adoptive transfer of expanded tTregs purified from umbilical cord blood ameliorates graft-versus-host disease in patients receiving hematopoietic stem cell transplantation for lymphohematopoietic malignancy, individual Treg products of 100 × 106 cells/kg are manufactured over an extended 19-day time period using a process that yields variable products and is both laborious and costly. These limitations could be overcome with the availability of 'off the shelf' Treg. RESULTS: Previously, the authors reported a repetitive restimulation expansion protocol that maintains Treg phenotype (CD4+25++127-Foxp3+), potentially providing hundreds to thousands of patient infusions. However, repetitive stimulation of effector T cells induces a well-defined program of exhaustion that leads to reduced T-cell survival and function. Unexpectedly, the authors found that multiply stimulated human tTregs do not develop an exhaustion signature and instead maintain their Treg gene expression pattern. The authors also found that tTregs expanded with one or two rounds of stimulation and tTregs expanded with three or five rounds of stimulation preferentially express distinct subsets of a group of five transcription factors that lock in Treg Foxp3expression, Treg stability and suppressor function. Multiply restimulated Tregs also had increased transcripts characteristic of T follicular regulatory cells, a Treg subset. DISCUSSION: These data demonstrate that repetitively expanded human tTregs have a Treg-locking transcription factor with stable FoxP3 and without the classical T-cell exhaustion gene expression profile-desirable properties that support the possibility of off-the-shelf Treg therapeutics.


Subject(s)
Graft vs Host Disease , T-Lymphocytes, Regulatory , Adoptive Transfer , Fetal Blood , Forkhead Transcription Factors/genetics , Humans
19.
Nature ; 520(7548): 558-62, 2015 Apr 23.
Article in English | MEDLINE | ID: mdl-25686607

ABSTRACT

Enhancers regulate spatiotemporal gene expression and impart cell-specific transcriptional outputs that drive cell identity. Super-enhancers (SEs), also known as stretch-enhancers, are a subset of enhancers especially important for genes associated with cell identity and genetic risk of disease. CD4(+) T cells are critical for host defence and autoimmunity. Here we analysed maps of mouse T-cell SEs as a non-biased means of identifying key regulatory nodes involved in cell specification. We found that cytokines and cytokine receptors were the dominant class of genes exhibiting SE architecture in T cells. Nonetheless, the locus encoding Bach2, a key negative regulator of effector differentiation, emerged as the most prominent T-cell SE, revealing a network in which SE-associated genes critical for T-cell biology are repressed by BACH2. Disease-associated single-nucleotide polymorphisms for immune-mediated disorders, including rheumatoid arthritis, were highly enriched for T-cell SEs versus typical enhancers or SEs in other cell lineages. Intriguingly, treatment of T cells with the Janus kinase (JAK) inhibitor tofacitinib disproportionately altered the expression of rheumatoid arthritis risk genes with SE structures. Together, these results indicate that genes with SE architecture in T cells encompass a variety of cytokines and cytokine receptors but are controlled by a 'guardian' transcription factor, itself endowed with an SE. Thus, enumeration of SEs allows the unbiased determination of key regulatory nodes in T cells, which are preferentially modulated by pharmacological intervention.


Subject(s)
Arthritis, Rheumatoid/genetics , Enhancer Elements, Genetic/genetics , T-Lymphocytes, Helper-Inducer/metabolism , T-Lymphocytes, Helper-Inducer/pathology , Animals , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/pathology , Basic-Leucine Zipper Transcription Factors/metabolism , Cell Differentiation/genetics , Cell Lineage/genetics , Gene Expression Regulation/genetics , Genetic Predisposition to Disease/genetics , Janus Kinase 3/antagonists & inhibitors , Mice , Mice, Inbred C57BL , Piperidines/pharmacology , Pyrimidines/pharmacology , Pyrroles/pharmacology , RNA, Untranslated/genetics , T-Lymphocytes, Helper-Inducer/immunology , Transcription, Genetic/genetics , p300-CBP Transcription Factors/metabolism
20.
Immunity ; 35(6): 972-85, 2011 Dec 23.
Article in English | MEDLINE | ID: mdl-22177921

ABSTRACT

Th17 cells have been described as short lived, but this view is at odds with their capacity to trigger protracted damage to normal and transformed tissues. We report that Th17 cells, despite displaying low expression of CD27 and other phenotypic markers of terminal differentiation, efficiently eradicated tumors and caused autoimmunity, were long lived, and maintained a core molecular signature resembling early memory CD8(+) cells with stem cell-like properties. In addition, we found that Th17 cells had high expression of Tcf7, a direct target of the Wnt and ß-catenin signaling axis, and accumulated ß-catenin, a feature observed in stem cells. In vivo, Th17 cells gave rise to Th1-like effector cell progeny and also self-renewed and persisted as IL-17A-secreting cells. Multipotency was required for Th17 cell-mediated tumor eradication because effector cells deficient in IFN-γ or IL-17A had impaired activity. Thus, Th17 cells are not always short lived and are a less-differentiated subset capable of superior persistence and functionality.


Subject(s)
Stem Cells/metabolism , Th17 Cells/immunology , Animals , Cell Differentiation/genetics , Cell Differentiation/immunology , Cell Survival/genetics , Gene Expression Profiling , Interleukin-17/biosynthesis , Mice , Mice, Transgenic , Neoplasms/immunology , Stem Cells/cytology , T-Lymphocyte Subsets/cytology , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Th1 Cells/cytology , Th1 Cells/immunology , Th17 Cells/cytology , Th17 Cells/metabolism , Tumor Necrosis Factor Receptor Superfamily, Member 7/genetics , Tumor Necrosis Factor Receptor Superfamily, Member 7/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL