Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Blood ; 135(13): 1019-1031, 2020 03 26.
Article in English | MEDLINE | ID: mdl-31978211

ABSTRACT

Deregulated overexpression of MYC is implicated in the development and malignant progression of most (∼70%) human tumors. MYC drives cell growth and proliferation, but also, at high levels, promotes apoptosis. Here, we report that the proliferative capacity of MYC-driven normal and neoplastic B lymphoid cells depends on MNT, a MYC-related transcriptional repressor. Our genetic data establish that MNT synergizes with MYC by suppressing MYC-driven apoptosis, and that it does so primarily by reducing the level of pro-apoptotic BIM. In Eµ-Myc mice, which model the MYC/IGH chromosome translocation in Burkitt's lymphoma, homozygous Mnt deletion greatly reduced lymphoma incidence by enhancing apoptosis and markedly decreasing premalignant B lymphoid cell populations. Strikingly, by inducing Mnt deletion within transplanted fully malignant Eµ-Myc lymphoma cells, we significantly extended transplant recipient survival. The dependency of lymphomas on MNT for survival suggests that drugs inhibiting MNT could significantly boost therapy of MYC-driven tumors by enhancing intrinsic MYC-driven apoptosis.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Apoptosis/genetics , Cell Transformation, Neoplastic/genetics , Lymphoma/genetics , Lymphoma/mortality , Proto-Oncogene Proteins c-myc/antagonists & inhibitors , Proto-Oncogene Proteins c-myc/genetics , Animals , Antineoplastic Agents/therapeutic use , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Bone Marrow/metabolism , Bone Marrow/pathology , Cell Line, Tumor , Disease Models, Animal , Gene Deletion , Gene Expression Regulation, Neoplastic , Humans , Kaplan-Meier Estimate , Lymphoma/drug therapy , Lymphoma/pathology , Lymphoma, B-Cell/genetics , Mice , Mice, Transgenic , Repressor Proteins/genetics , Xenograft Model Antitumor Assays
2.
Immunol Cell Biol ; 97(1): 29-38, 2019 01.
Article in English | MEDLINE | ID: mdl-30107066

ABSTRACT

BPSM1 (Bone phenotype spontaneous mutant 1) mice develop severe polyarthritis and heart valve disease as a result of a spontaneous mutation in the Tnf gene. In these mice, the insertion of a retrotransposon in the 3' untranslated region of Tnf causes a large increase in the expression of the cytokine. We have found that these mice also develop inducible bronchus-associated lymphoid tissue (iBALT), as well as nodular lymphoid hyperplasia (NLH) in the bone marrow. Loss of TNFR1 prevents the development of both types of follicles, but deficiency of TNFR1 in the hematopoietic compartment only prevents the iBALT and not the NLH phenotype. We show that the development of arthritis and heart valve disease does not depend on the presence of the tertiary lymphoid tissues. Interestingly, while loss of IL-17 or IL-23 limits iBALT and NLH development to some extent, it has no effect on polyarthritis or heart valve disease in BPSM1 mice.


Subject(s)
Lymphoid Tissue/pathology , Receptors, Tumor Necrosis Factor/genetics , Receptors, Tumor Necrosis Factor/metabolism , Tumor Necrosis Factor-alpha/biosynthesis , Animals , Bone Marrow/pathology , Hyperplasia , Interleukin-17/genetics , Interleukin-17/metabolism , Interleukin-23/genetics , Interleukin-23/metabolism , Lymphoid Tissue/metabolism , Mice , Tumor Necrosis Factor-alpha/genetics
3.
Cell Death Differ ; 28(7): 2126-2144, 2021 07.
Article in English | MEDLINE | ID: mdl-33589776

ABSTRACT

Necroptosis is a lytic, inflammatory cell death pathway that is dysregulated in many human pathologies. The pathway is executed by a core machinery comprising the RIPK1 and RIPK3 kinases, which assemble into necrosomes in the cytoplasm, and the terminal effector pseudokinase, MLKL. RIPK3-mediated phosphorylation of MLKL induces oligomerization and translocation to the plasma membrane where MLKL accumulates as hotspots and perturbs the lipid bilayer to cause death. The precise choreography of events in the pathway, where they occur within cells, and pathway differences between species, are of immense interest. However, they have been poorly characterized due to a dearth of validated antibodies for microscopy studies. Here, we describe a toolbox of antibodies for immunofluorescent detection of the core necroptosis effectors, RIPK1, RIPK3, and MLKL, and their phosphorylated forms, in human and mouse cells. By comparing reactivity with endogenous proteins in wild-type cells and knockout controls in basal and necroptosis-inducing conditions, we characterise the specificity of frequently-used commercial and recently-developed antibodies for detection of necroptosis signaling events. Importantly, our findings demonstrate that not all frequently-used antibodies are suitable for monitoring necroptosis by immunofluorescence microscopy, and methanol- is preferable to paraformaldehyde-fixation for robust detection of specific RIPK1, RIPK3, and MLKL signals.


Subject(s)
Protein Kinases/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Animals , Cell Membrane/metabolism , HT29 Cells , Humans , Mice , Necroptosis , Phosphorylation
4.
Nat Commun ; 12(1): 6920, 2021 11 26.
Article in English | MEDLINE | ID: mdl-34836954

ABSTRACT

Bone marrow is a preferred metastatic site for multiple solid tumours and is associated with poor prognosis and significant morbidity. Accumulating evidence indicates that cancer cells colonise specialised niches within the bone marrow to support their long-term propagation, but the precise location and mechanisms that mediate niche interactions are unknown. Using breast cancer as a model of solid tumour metastasis to the bone marrow, we applied large-scale quantitative three-dimensional imaging to characterise temporal changes in the bone marrow microenvironment during disease progression. We show that mouse mammary tumour cells preferentially home to a pre-existing metaphyseal domain enriched for type H vessels. Metastatic lesion outgrowth rapidly remodelled the local vasculature through extensive sprouting to establish a tumour-supportive microenvironment. The evolution of this tumour microenvironment reflects direct remodelling of the vascular endothelium through tumour-derived granulocyte-colony stimulating factor (G-CSF) in a hematopoietic cell-independent manner. Therapeutic targeting of the metastatic niche by blocking G-CSF receptor inhibited pathological blood vessel remodelling and reduced bone metastasis burden. These findings elucidate a mechanism of 'host' microenvironment hijacking by mammary tumour cells to subvert the local microvasculature to form a specialised, pro-tumorigenic niche.


Subject(s)
Bone Marrow , Bone Neoplasms , Breast Neoplasms , Mammary Neoplasms, Animal , Neoplasm Metastasis , Tumor Microenvironment , Animals , Bone Marrow/diagnostic imaging , Bone Marrow/surgery , Bone Neoplasms/diagnostic imaging , Bone Neoplasms/surgery , Bone and Bones/diagnostic imaging , Bone and Bones/surgery , Breast Neoplasms/surgery , Disease Progression , Granulocyte Colony-Stimulating Factor , Humans , Imaging, Three-Dimensional , Mice , Neoplasm Metastasis/diagnostic imaging , Neoplasm Metastasis/therapy , Neoplasms, Second Primary , Receptors, Colony-Stimulating Factor
5.
Cell Rep ; 33(3): 108290, 2020 10 20.
Article in English | MEDLINE | ID: mdl-33086063

ABSTRACT

JQ1 is a BET-bromodomain inhibitor that has immunomodulatory effects. However, the precise molecular mechanism that JQ1 targets to elicit changes in antibody production is not understood. Our results show that JQ1 induces apoptosis, reduces cell proliferation, and as a consequence, inhibits antibody-secreting cell differentiation. ChIP-sequencing reveals a selective displacement of Brd4 in response to acute JQ1 treatment (<2 h), resulting in specific transcriptional repression. After 8 h, subsequent alterations in gene expression arise as a result of the global loss of Brd4 occupancy. We demonstrate that apoptosis induced by JQ1 is solely attributed to the pro-apoptotic protein Bim (Bcl2l11). Conversely, cell-cycle regulation by JQ1 is associated with multiple Myc-associated gene targets. Our results demonstrate that JQ1 drives temporal changes in Brd4 displacement that results in a specific transcriptional profile that directly affects B cell survival and proliferation to modulate the humoral immune response.


Subject(s)
Bcl-2-Like Protein 11/metabolism , Nuclear Proteins/metabolism , Transcription Factors/metabolism , Animals , Apoptosis/drug effects , Azepines/pharmacology , B-Lymphocytes/metabolism , Bcl-2-Like Protein 11/physiology , Cell Cycle Checkpoints/drug effects , Cell Differentiation/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Female , Gene Expression Regulation, Neoplastic/drug effects , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Nuclear Proteins/genetics , Nuclear Proteins/physiology , Proto-Oncogene Proteins c-myc/metabolism , Transcription Factors/genetics , Transcription Factors/physiology , Triazoles/pharmacology , Xenograft Model Antitumor Assays
6.
J Exp Med ; 217(9)2020 09 07.
Article in English | MEDLINE | ID: mdl-32706855

ABSTRACT

How platelets are produced by megakaryocytes in vivo remains controversial despite more than a century of investigation. Megakaryocytes readily produce proplatelet structures in vitro; however, visualization of platelet release from proplatelets in vivo has remained elusive. We show that within the native prenatal and adult environments, the frequency and rate of proplatelet formation is incompatible with the physiological demands of platelet replacement. We resolve this inconsistency by performing in-depth analysis of plasma membrane budding, a cellular process that has previously been dismissed as a source of platelet production. Our studies demonstrate that membrane budding results in the sustained release of platelets directly into the peripheral circulation during both fetal and adult life without induction of cell death or proplatelet formation. In support of this model, we demonstrate that in mice deficient for NF-E2 (the thrombopoietic master regulator), the absence of membrane budding correlates with failure of in vivo platelet production. Accordingly, we propose that membrane budding, rather than proplatelet formation, supplies the majority of the platelet biomass.


Subject(s)
Blood Platelets/cytology , Cell Membrane/metabolism , Animals , Blood Platelets/metabolism , Blood Platelets/ultrastructure , Bone Marrow Cells/cytology , Cell Lineage , Cell Membrane/ultrastructure , Databases as Topic , Embryo, Mammalian/cytology , Fetus/cytology , Gene Expression Regulation , Imaging, Three-Dimensional , Integrases/metabolism , Liver/embryology , Megakaryocytes/cytology , Megakaryocytes/metabolism , Mice, Inbred C57BL , Ploidies , Reproducibility of Results , Skull/cytology
SELECTION OF CITATIONS
SEARCH DETAIL