Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
Respir Res ; 25(1): 49, 2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38245732

ABSTRACT

BACKGROUND: Chronic obstructive pulmonary disease (COPD) has the highest increased risk due to household air pollution arising from biomass fuel burning. However, knowledge on COPD patho-mechanisms is mainly limited to tobacco smoke exposure. In this study, a repeated direct wood smoke (WS) exposure was performed using normal- (bro-ALI) and chronic bronchitis-like bronchial (bro-ALI-CB), and alveolar (alv-ALI) lung mucosa models at air-liquid interface (ALI) to assess broad toxicological end points. METHODS: The bro-ALI and bro-ALI-CB models were developed using human primary bronchial epithelial cells and the alv-ALI model was developed using a representative type-II pneumocyte cell line. The lung models were exposed to WS (10 min/exposure; 5-exposures over 3-days; n = 6-7 independent experiments). Sham exposed samples served as control. WS composition was analyzed following passive sampling. Cytotoxicity, total cellular reactive oxygen species (ROS) and stress responsive NFkB were assessed by flow cytometry. WS exposure induced changes in gene expression were evaluated by RNA-seq (p ≤ 0.01) followed by pathway enrichment analysis. Secreted levels of proinflammatory cytokines were assessed in the basal media. Non-parametric statistical analysis was performed. RESULTS: 147 unique compounds were annotated in WS of which 42 compounds have inhalation toxicity (9 very high). WS exposure resulted in significantly increased ROS in bro-ALI (11.2%) and bro-ALI-CB (25.7%) along with correspondingly increased NFkB levels (bro-ALI: 35.6%; bro-ALI-CB: 18.1%). A total of 1262 (817-up and 445-down), 329 (141-up and 188-down), and 102 (33-up and 69-down) genes were differentially regulated in the WS-exposed bro-ALI, bro-ALI-CB, and alv-ALI models respectively. The enriched pathways included the terms acute phase response, mitochondrial dysfunction, inflammation, oxidative stress, NFkB, ROS, xenobiotic metabolism of AHR, and chronic respiratory disorder. The enrichment of the 'cilium' related genes was predominant in the WS-exposed bro-ALI (180-up and 7-down). The pathways primary ciliary dyskinesia, ciliopathy, and ciliary movement were enriched in both WS-exposed bro-ALI and bro-ALI-CB. Interleukin-6 and tumor necrosis factor-α were reduced (p < 0.05) in WS-exposed bro-ALI and bro-ALI-CB. CONCLUSION: Findings of this study indicate differential response to WS-exposure in different lung regions and in chronic bronchitis, a condition commonly associated with COPD. Further, the data suggests ciliopathy as a candidate pathway in relation to WS-exposure.


Subject(s)
Bronchitis, Chronic , Ciliopathies , Pulmonary Disease, Chronic Obstructive , Humans , Bronchitis, Chronic/chemically induced , Bronchitis, Chronic/metabolism , Smoke/adverse effects , Wood/toxicity , Reactive Oxygen Species/metabolism , Lung/metabolism , Pulmonary Disease, Chronic Obstructive/metabolism , Mucous Membrane , Tobacco Products
2.
Arch Toxicol ; 97(9): 2343-2356, 2023 09.
Article in English | MEDLINE | ID: mdl-37482550

ABSTRACT

Nicotine pouches contain fewer characteristic toxicants than conventional tobacco products. However, the associated risks in terms of toxicity and addiction potential are still unclear. Therefore, endpoints of toxicity and contents of flavoring substances were investigated in this study. The in vitro toxicity of five different nicotine pouches and the reference snus CRP1.1 were studied in human gingival fibroblasts (HGF-1). Cells were exposed to product extracts (nicotine contents: 0.03-1.34 mg/mL) and sampled at different time points. Cytotoxicity, total cellular reactive oxygen species (ROS) levels, and changes in the expression levels of inflammatory and oxidative stress genes were assessed. Flavor compounds used in the nicotine pouches were identified by GC-MS. Cytotoxicity was observed in two nicotine pouches. Gene expression of interleukin 6 (IL6) and heme oxygenase 1 (HMOX1) was upregulated by one and three pouches, respectively. ROS production was either increased or decreased, by one pouch each. CRP1.1 caused an upregulation of IL6 and elevated ROS production. Toxicity was not directly dependent on nicotine concentration and osmolarity. A total of 56 flavorings were detected in the five nicotine pouches. Seven flavorings were classified according to the harmonized hazard classification system as laid down in the European Classification, Labelling and Packaging regulation. Nine flavorings are known cytotoxins. Cytotoxicity, inflammation, and oxidative stress responses indicate that adverse effects such as local lesions in the buccal mucosa may occur after chronic product use. In conclusion, flavorings used in nicotine pouches likely contribute to the toxicity of nicotine pouches.


Subject(s)
Electronic Nicotine Delivery Systems , Tobacco Products , Humans , Nicotine/toxicity , Interleukin-6/genetics , Reactive Oxygen Species , Fibroblasts , Tobacco Products/toxicity
3.
Arch Toxicol ; 97(9): 2357-2369, 2023 09.
Article in English | MEDLINE | ID: mdl-37389646

ABSTRACT

Nicotine pouches are oral products that deliver nicotine without containing tobacco. Previous studies mainly focused on the determination of known tobacco toxicants, while yet no untargeted analysis has been published on unknown constituents, possibly contributing to toxicity. Furthermore, additives might enhance product attractiveness. We therefore performed an aroma screening with 48 different nicotine-containing and two nicotine-free pouches using gas chromatography coupled to mass spectrometry, following acidic and basic liquid-liquid extraction. For toxicological assessment of identified substances, European and international classifications for chemical and food safety were consulted. Further, ingredients listed on product packages were counted and grouped by function. Most abundant ingredients comprised sweeteners, aroma substances, humectants, fillers, and acidity regulators. 186 substances were identified. For some substances, acceptable daily intake limits set by European Food Safety Agency (EFSA) and Joint FAO/WHO Expert Committee on Food Additives are likely exceeded by moderate pouch consumption. Eight hazardous substances are classified according to the European CLP regulation. Thirteen substances were not authorized as food flavorings by EFSA, among them impurities such as myosmine and ledol. Three substances were classified by International Agency for Research on Cancer as possibly carcinogenic to humans. The two nicotine-free pouches contain pharmacologically active ingredients such as ashwagandha extract and caffeine. The presence of potentially harmful substances may point to the need for regulation of additives in nicotine-containing and nicotine-free pouches that could be based on provisions for food additives. For sure, additives may not pretend positive health effects in case the product is used.


Subject(s)
Flavoring Agents , Nicotine , Humans , Nicotine/toxicity , Nicotine/analysis , Gas Chromatography-Mass Spectrometry , Flavoring Agents/toxicity , Flavoring Agents/analysis , Food Additives/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL