Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Eur J Hum Genet ; 31(11): 1275-1282, 2023 11.
Article in English | MEDLINE | ID: mdl-37460658

ABSTRACT

Metaplastic breast cancer (MpBC) is a rare, aggressive breast cancer (BC) histotype. Scarce information is available about MpBC genetic predisposition. Previous studies, mainly consisting of case reports, retrospective reviews and others on target therapies, pointed to a possible involvement of the BRCA1 gene in increasing MpBC risk, without ever confirming it. In this study, we retrospectively reviewed all BC patients counseled at our Institute for genetic testing of at least BRCA1 or BRCA2 (BRCA) genes and we found that 23 (23/5226 = 0.4%) were affected by MpBC. About 65% (15/23) of MpBC patients harbored a germline pathogenic variant (PV): 13 in BRCA1 (86.7%), including two patients who received genetic testing for known familial PV, one in TP53 (6.7%), and one in MLH1 (6.7%). We observed a statistically different frequency of MpBC in patients who carried a PV in the BRCA genes (13/1114 = 1.2%) vs. all other BC patients (10/4112 = 0.2%) (p = 0.0002). BRCA carriers proved to have an increased risk of developing MpBC compared to all other BC patients who were tested for BRCA genes (OR = 4.47; 95% CI: 1.95-10.23). Notably, MpBCs were diagnosed in 2.1% (13/610) of BRCA1 carriers. No MpBCs were observed in BRCA2 carriers (0/498 = 0%), revealing a statistically significant difference between the prevalence of MpBCs in BRCA1 and BRCA2 carriers (p = 0.0015). Our results confirmed that BRCA1 is involved in MpBC predisposition. Further studies on unselected patients are needed to elucidate the authentic role of BRCA1 and to explore the possible implication of other genes in MpBC predisposition.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/epidemiology , Genes, BRCA1 , Retrospective Studies , BRCA2 Protein/genetics , BRCA1 Protein/genetics , Germ-Line Mutation , Genetic Predisposition to Disease , Germ Cells
2.
HLA ; 95(5): 457-464, 2020 05.
Article in English | MEDLINE | ID: mdl-31950670

ABSTRACT

HLA-E, a class I nonclassical HLA molecule, is expressed in all tissues and is involved in the regulation of both innate (by interaction with the CD94/NKG2 receptor expressed mainly in NK cells) and adaptive immunity (by interaction with T CD8+ cells), suggesting a possible role in the solid organ transplantation context. Transplanted patients with chronic kidney disease and their respective donors (N = 107 pairs) were genotyped for exons 2 and 3 of the HLA-E locus by sequence-based typing (SBT). Groups' genotype frequencies were compared regarding episodes of clinical rejection by global G test, and binary logistic regression was made to demonstrate the contribution of genetic variables vs epidemiological variables. Comparisons of donors' genotype frequencies showed significant differences (P = .0230), revealing a protective profile of E*01:01/*01:01 compared to the other genotypes (P = .0099; OR = 0.3088; CI [95%] = 0.1333-0.7157). The same happened when the aforementioned genotype was combined with the E*01:01/*01:01 recipients' genotype (P = .0065; OR = 0.1760; CI [95%] = 0.0517-0.5987). A binary logistic regression analysis was performed, and, of all variables considered, only two were included in the resulting model (P = .007; R2 Cox and Snell = 0.243; R2 Nagelkerke = 0.328)- "End-Stage Renal Disease" and "HLA class II Mismatches." A protective profile (E*01:01/*01:01) was observed between the recipients and donors, suggesting a possible impact of the HLA-E genotype in rejection episodes.


Subject(s)
Histocompatibility Antigens Class I/genetics , Kidney Transplantation , Alleles , Genotype , Graft Rejection/genetics , Humans , HLA-E Antigens
3.
PLoS One ; 14(2): e0212750, 2019.
Article in English | MEDLINE | ID: mdl-30794652

ABSTRACT

The HLA-G and MICA genes are stimulated under inflammatory conditions and code for soluble (sMICA and sHLA-G) or membrane-bound molecules that exhibit immunomodulatory properties. It is still unclear whether they would have a synergistic or antagonistic effect on the immunomodulation of the inflammatory response, such as in chronic kidney disease (CKD), contributing to a better prognosis after the kidney transplantation. In this study, we went from genetic to plasma analysis, first evaluating the polymorphism of MICA, NKG2D and HLA-G in a cohort from Southern Brazil, subdivided in a control group of individuals (n = 75), patients with CKD (n = 94), and kidney-transplant (KT) patients (n = 64). MICA, NKG2D and HLA-G genotyping was performed by polymerase chain reaction with specific oligonucleotide probes, Taqman and Sanger sequencing, respectively. Levels of soluble forms of MICA and HLA-G were measured in plasma with ELISA. Case-control analysis showed that the individuals with haplotype HLA-G*01:01/UTR-4 have a lower susceptibility to develop chronic kidney disease (OR = 0.480; p = 0.032). Concerning the group of kidney-transplant patients, the HLA-G genotypes +3010 GC (rs1710) and +3142 GC (rs1063320) were associated with higher risk for allograft rejection (OR = 5.357; p = 0.013 and OR = 5.357, p = 0.013, respectively). Nevertheless, the genotype +3010 GG (OR = 0.136; p = 0.041) was associated with kidney allograft acceptance, suggesting that it is a protection factor for rejection. In addition, the phenotypic analysis revealed higher levels of sHLA-G (p = 0.003) and sMICA (p < 0.001) in plasma were associated with the development of CKD. For patients who were already under chronic pathological stress and underwent a kidney transplant, a high sMICA (p = 0.001) in pre-transplant proved to favor immunomodulation and allograft acceptance. Even so, the association of genetic factors with differential levels of soluble molecules were not evidenced, we displayed a synergistic effect of sMICA and sHLA-G in response to inflammation. This increase was observed in CKD patients, that when undergo transplantation, had this previous amount of immunoregulatory molecules as a positive factor for the allograft acceptance.


Subject(s)
Graft Rejection/genetics , HLA-G Antigens/genetics , Histocompatibility Antigens Class I/genetics , Kidney Transplantation , Polymorphism, Genetic , Renal Insufficiency, Chronic/genetics , Adult , Allografts , Case-Control Studies , Female , Graft Rejection/immunology , Graft Rejection/pathology , HLA-G Antigens/immunology , Histocompatibility Antigens Class I/immunology , Humans , Male , Middle Aged , NK Cell Lectin-Like Receptor Subfamily K/genetics , NK Cell Lectin-Like Receptor Subfamily K/immunology , Renal Insufficiency, Chronic/immunology , Renal Insufficiency, Chronic/pathology , Renal Insufficiency, Chronic/surgery , Risk Factors
4.
Front Immunol ; 8: 179, 2017.
Article in English | MEDLINE | ID: mdl-28289413

ABSTRACT

This paper aims to present an overview of MICA and natural killer group 2 member D (NKG2D) genetic and functional interactions and their impact on kidney transplant outcome. Organ transplantation has gone from what can accurately be called a "clinical experiment" to a routine and reliable practice, which has proven to be clinically relevant, life-saving and cost-effective when compared with non-transplantation management strategies of both chronic and acute end-stage organ failures. The kidney is the most frequently transplanted organ in the world (transplant-observatory). The two treatment options for end-stage renal disease (ESRD) are dialysis and/or transplantation. Compared with dialysis, transplantation is associated with significant improvements in quality of life and overall longevity. A strong relationship exists between allograft loss and human leukocyte antigens (HLA) antibodies (Abs). HLA Abs are not the only factor involved in graft loss, as multiple studies have shown that non-HLA antigens are also involved, even when a patient has a good HLA matche and receives standard immunosuppressive therapy. A deeper understanding of other biomarkers is therefore important, as it is likely to lead to better monitoring (and consequent success) of organ transplants. The objective is to fill the void left by extensive reviews that do not often dive this deep into the importance of MICA and NKG2D in allograft acceptance and their partnership in the immune response. There are few papers that explore the relationship between these two protagonists when it comes to kidney transplantation. This is especially true for the role of NKG2D in kidney transplantation. These reasons give a special importance to this review, which aims to be a helpful tool in the hands of researchers in this field.

SELECTION OF CITATIONS
SEARCH DETAIL