Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
J Neurosci ; 44(39)2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39168654

ABSTRACT

Growth-associated protein of 43 kDa (GAP43) is a key cytoskeleton-associated component of the presynaptic terminal that facilitates neuroplasticity. Downregulation of GAP43 expression has been associated to various psychiatric conditions in humans and evokes hippocampus-dependent memory impairments in mice. Despite the extensive studies conducted on hippocampal GAP43 in past decades, however, very little is known about its roles in modulating the excitatory versus inhibitory balance in other brain regions. We recently generated conditional knock-out mice in which the Gap43 gene was selectively inactivated in either telencephalic glutamatergic neurons (Gap43fl/fl ;Nex1Cre mice, hereafter Glu-GAP43-/- mice) or forebrain GABAergic neurons (Gap43fl/fl ;Dlx5/6Cre mice, hereafter GABA-GAP43-/- mice). Here, we show that Glu-GAP43-/- but not GABA-GAP43-/- mice of either sex show a striking hyperactive phenotype when exposed to a novel environment. This behavioral alteration of Glu-GAP43-/- mice was linked to a selective activation of dorsal-striatum neurons, as well as to an enhanced corticostriatal glutamatergic transmission and an abrogation of corticostriatal endocannabinoid-mediated long-term depression. In line with these observations, GAP43 was abundantly expressed in corticostriatal glutamatergic terminals of wild-type mice. The novelty-induced hyperactive phenotype of Glu-GAP43-/- mice was abrogated by chemogenetically inhibiting corticostriatal afferences with a Gi-coupled "designer receptor exclusively activated by designer drugs" (DREADDs), thus further supporting that novelty-induced activity is controlled by GAP43 at corticostriatal excitatory projections. Taken together, these findings show an unprecedented regulatory role of GAP43 in the corticostriatal circuitry and provide a new mouse model with a delimited neuronal-circuit alteration for studying novelty-induced hyperactivity, a phenotypic shortfall that occurs in diverse psychiatric diseases.


Subject(s)
Corpus Striatum , GAP-43 Protein , Mice, Knockout , Animals , Mice , Male , Corpus Striatum/metabolism , Female , GAP-43 Protein/metabolism , GAP-43 Protein/genetics , Cerebral Cortex/metabolism , Cerebral Cortex/physiology , Hyperkinesis/metabolism , Hyperkinesis/genetics , Presynaptic Terminals/metabolism , Exploratory Behavior/physiology , Mice, Inbred C57BL , GABAergic Neurons/metabolism , GABAergic Neurons/physiology
2.
J Neurosci ; 41(38): 7924-7941, 2021 09 22.
Article in English | MEDLINE | ID: mdl-34353897

ABSTRACT

Cannabinoids, the bioactive constituents of cannabis, exert a wide array of effects on the brain by engaging Type 1 cannabinoid receptor (CB1R). Accruing evidence supports that cannabinoid action relies on context-dependent factors, such as the biological characteristics of the target cell, suggesting that cell population-intrinsic molecular cues modulate CB1R-dependent signaling. Here, by using a yeast two-hybrid-based high-throughput screening, we identified BiP as a potential CB1R-interacting protein. We next found that CB1R and BiP interact specifically in vitro, and mapped the interaction site within the CB1R C-terminal (intracellular) domain and the BiP C-terminal (substrate-binding) domain-α. BiP selectively shaped agonist-evoked CB1R signaling by blocking an "alternative" Gq/11 protein-dependent signaling module while leaving the "classical" Gi/o protein-dependent inhibition of the cAMP pathway unaffected. In situ proximity ligation assays conducted on brain samples from various genetic mouse models of conditional loss or gain of CB1R expression allowed to map CB1R-BiP complexes selectively on terminals of GABAergic neurons. Behavioral studies using cannabinoid-treated male BiP+/- mice supported that CB1R-BiP complexes modulate cannabinoid-evoked anxiety, one of the most frequent undesired effects of cannabis. Together, by identifying BiP as a CB1R-interacting protein that controls receptor function in a signaling pathway- and neuron population-selective manner, our findings may help to understand the striking context-dependent actions of cannabis in the brain.SIGNIFICANCE STATEMENT Cannabis use is increasing worldwide, so innovative studies aimed to understand its complex mechanism of neurobiological action are warranted. Here, we found that cannabinoid CB1 receptor (CB1R), the primary molecular target of the bioactive constituents of cannabis, interacts specifically with an intracellular protein called BiP. The interaction between CB1R and BiP occurs selectively on terminals of GABAergic (inhibitory) neurons, and induces a remarkable shift in the CB1R-associated signaling profile. Behavioral studies conducted in mice support that CB1R-BiP complexes act as fine-tuners of anxiety, one of the most frequent undesired effects of cannabis use. Our findings open a new conceptual framework to understand the striking context-dependent pharmacological actions of cannabis in the brain.


Subject(s)
Brain/metabolism , Cannabinoids/metabolism , GABAergic Neurons/metabolism , Heat-Shock Proteins/metabolism , Receptor, Cannabinoid, CB1/metabolism , Signal Transduction/physiology , Animals , Endoplasmic Reticulum Chaperone BiP , HEK293 Cells , Heat-Shock Proteins/genetics , Humans , Mice , Mice, Knockout , Receptor, Cannabinoid, CB1/genetics
3.
Int J Mol Sci ; 22(22)2021 Nov 20.
Article in English | MEDLINE | ID: mdl-34830414

ABSTRACT

In the present study, we investigated the involvement of the chaperone protein BiP (also known as GRP78 or Hspa5), a master regulator of intracellular proteostasis, in two mouse models of neurodegenerative diseases: amyotrophic lateral sclerosis (ALS) and Parkinson's disease (PD). To this end, we used mice bearing partial genetic deletion of the BiP gene (BiP+/- mice), which, for the ALS model, were crossed with mutant SOD1 (mSOD1) transgenic mice to generate mSOD1/BiP+/- double mutant mice. Our data revealed a more intense neurological decline in the double mutants, reflected in a greater deterioration of the neurological score and rotarod performance, with also a reduced animal survival, compared to mSOD1 transgenic mice. Such worsening was associated with higher microglial (labelled with Iba-1 immunostaining) and, to a lesser extent, astroglial (labelled with GFAP immunostaining) immunoreactivities found in the double mutants, but not with a higher loss of spinal motor neurons (labelled with Nissl staining) in the spinal cord. The morphological analysis of Iba-1 and GFAP-positive cells revealed a higher presence of activated cells, characterized by elevated cell body size and shorter processes, in double mutants compared to mSOD1 mice with normal BiP expression. In the case of the PD model, BiP+/- mice were unilaterally lesioned with the parkinsonian neurotoxin 6-hydroxydopamine (6-OHDA). In this case, however, we did not detect a greater susceptibility to damage in mutant mice, as the motor defects caused by 6-OHDA in the pole test and the cylinder rearing test, as well as the losses in tyrosine hydroxylase-containing neurons and the elevated glial reactivity (labelled with CD68 and GFAP immunostaining) detected in the substantia nigra were of similar magnitude in BiP+/- mice compared with wildtype animals. Therefore, our findings support the view that a dysregulation of the protein BiP may contribute to ALS pathogenesis. As BiP has been recently related to cannabinoid type-1 (CB1) receptor function, our work also opens the door to future studies on a possible link between BiP and the neuroprotective effects of cannabinoids that have been widely reported in this neuropathological context. In support of this possibility, preliminary data indicate that CB1 receptor levels are significantly reduced in mSOD1 mice having partial deletion of BiP gene.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Endoplasmic Reticulum Chaperone BiP/genetics , Parkinson Disease/genetics , Receptor, Cannabinoid, CB1/genetics , Superoxide Dismutase-1/genetics , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Animals , Astrocytes/metabolism , Astrocytes/pathology , Disease Models, Animal , Gene Expression Regulation/drug effects , Humans , Mice , Mice, Transgenic/genetics , Microglia/metabolism , Microglia/pathology , Motor Neurons/metabolism , Motor Neurons/pathology , Oxidopamine/pharmacology , Parkinson Disease/metabolism , Parkinson Disease/pathology , Substantia Nigra/metabolism , Substantia Nigra/pathology
4.
Biochim Biophys Acta Mol Cell Res ; 1865(6): 863-873, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29567212

ABSTRACT

Annexins are a multigene family of proteins involved in aggregation and fusion processes of biological membranes. One of its best-known members is annexin A2 (or p36), capable of binding to acidic phospholipids in a calcium-dependent manner, as occurs with other members of the same family. In its heterotetrameric form, especially with protein S100A10 (p11), annexin A2 has been involved as a determinant factor in innumerable biological processes like tumor development or anticoagulation. However, the subcellular coexistence of different pools of the protein, in which the monomeric form of annexin A2 is growing in functional relevance, is to date poorly described. In this work we present an exhaustive structural and functional characterization of monomeric human annexin A2 by using different recombinant mutants. The important role of the amphipathic N-terminal α-helix in membrane binding and aggregation has been analyzed. We have also studied the potential implication of lateral "antiparallel" protein dimers in membrane aggregation. In contrast to what was previously suggested, formation of these dimers negatively regulate aggregation. We have also confirmed the essential role of three lysine residues located in the convex surface of the molecule in calcium-free and calcium-dependent membrane binding and aggregation. Finally, we propose models for annexin A2-mediated vesicle aggregation mechanisms.


Subject(s)
Annexin A2/chemistry , Membranes, Artificial , Models, Chemical , Protein Multimerization , Annexin A2/genetics , Annexin A2/metabolism , Humans , Mutation , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
5.
J Biol Chem ; 291(40): 20962-20975, 2016 Sep 30.
Article in English | MEDLINE | ID: mdl-27502274

ABSTRACT

It has been suggested that DYNLT1, a dynein light chain known to bind to various cellular and viral proteins, can function both as a molecular clamp and as a microtubule-cargo adapter. Recent data have shown that the DYNLT1 homodimer binds to two dynein intermediate chains to subsequently link cargo proteins such as the guanine nucleotide exchange factor Lfc or the small GTPases RagA and Rab3D. Although over 20 DYNLT1-interacting proteins have been reported, the exact sequence requirements that enable their association to the canonical binding groove or to the secondary site within the DYNLT1 surface are unknown. We describe herein the sequence recognition properties of the hydrophobic groove of DYNLT1 known to accommodate dynein intermediate chain. Using a pepscan approach, we have substituted each amino acid within the interacting peptide for all 20 natural amino acids and identified novel binding sequences. Our data led us to propose activin receptor IIB as a novel DYNLT1 ligand and suggest that DYNLT1 functions as a molecular dimerization engine bringing together two receptor monomers in the cytoplasmic side of the membrane. In addition, we provide evidence regarding a dual binding mode adopted by certain interacting partners such as Lfc or the parathyroid hormone receptor. Finally, we have used NMR spectroscopy to obtain the solution structure of human DYNLT1 forming a complex with dynein intermediate chain of ∼74 kDa; it is the first mammalian structure available.


Subject(s)
Dyneins/chemistry , Dyneins/metabolism , Protein Multimerization/physiology , Activin Receptors, Type II/genetics , Activin Receptors, Type II/metabolism , Animals , COS Cells , Chlorocebus aethiops , Dyneins/genetics , Humans , Hydrophobic and Hydrophilic Interactions , Mice , Nuclear Magnetic Resonance, Biomolecular , Rho Guanine Nucleotide Exchange Factors/genetics , Rho Guanine Nucleotide Exchange Factors/metabolism
6.
J Biol Chem ; 291(22): 11581-95, 2016 May 27.
Article in English | MEDLINE | ID: mdl-27030110

ABSTRACT

Neuronal nitric-oxide synthase, unlike its endothelial and inducible counterparts, displays a PDZ (PSD-95/Dlg/ZO-1) domain located at its N terminus involved in subcellular targeting. The C termini of various cellular proteins insert within the binding groove of this PDZ domain and determine the subcellular distribution of neuronal NOS (nNOS). The molecular mechanisms underlying these interactions are poorly understood because the PDZ domain of nNOS can apparently exhibit class I, class II, and class III binding specificity. In addition, it has been recently suggested that the PDZ domain of nNOS binds with very low affinity to the C termini of target proteins, and a necessary simultaneous lateral interaction must take place for binding to occur. We describe herein that the PDZ domain of nNOS can behave as a bona fide class III PDZ domain and bind to C-terminal sequences with acidic residues at the P-2 position with low micromolar binding constants. Binding to C-terminal sequences with a hydrophobic residue at the P-2 position plus an acidic residue at the P-3 position (class II) can also occur, although interactions involving residues extending up to the P-7 position mediate this type of binding. This promiscuous behavior also extends to its association to class I sequences, which must display a Glu residue at P-3 and a Thr residue at P-2 By means of site-directed mutagenesis and NMR spectroscopy, we have been able to identify the residues involved in each specific type of binding and rationalize the mechanisms used to recognize binding partners. Finally, we have analyzed the high affinity association of the PDZ domain of nNOS to claudin-3 and claudin-14, two tight junction tetraspan membrane proteins that are essential components of the paracellular barrier.


Subject(s)
Claudin-3/metabolism , Neurons/metabolism , Nitric Oxide Synthase Type I/metabolism , PDZ Domains , Peptide Fragments/metabolism , Amino Acid Sequence , Animals , Binding Sites , Cells, Cultured , Claudin-3/genetics , Fluorescence Polarization , Fluorescent Antibody Technique , Immunoprecipitation , Magnetic Resonance Spectroscopy , Molecular Sequence Data , Mutagenesis, Site-Directed , Neurons/cytology , Nitric Oxide Synthase Type I/genetics , Peptide Fragments/genetics , Protein Binding , Protein Domains , Rats , Sequence Homology, Amino Acid
7.
J Cell Sci ; 127(Pt 15): 3360-72, 2014 08 01.
Article in English | MEDLINE | ID: mdl-24928905

ABSTRACT

Vascular endothelial growth factor (VEGF) regulates key functions of the endothelium, such as angiogenesis or vessel repair in processes involving endothelial nitric oxide synthase (eNOS) activation. One of the effector kinases that become activated in endothelial cells upon VEGF treatment is protein kinase D (PKD). Here, we show that PKD phosphorylates eNOS, leading to its activation and a concomitant increase in NO synthesis. Using mass spectrometry, we show that the purified active kinase specifically phosphorylates recombinant eNOS on Ser1179. Treatment of endothelial cells with VEGF or phorbol 12,13-dibutyrate (PDBu) activates PKD and increases eNOS Ser1179 phosphorylation. In addition, pharmacological inhibition of PKD and gene silencing of both PKD1 and PKD2 abrogate VEGF signaling, resulting in a clear diminished migration of endothelial cells in a wound healing assay. Finally, inhibition of PKD in mice results in an almost complete disappearance of the VEGF-induced vasodilatation, as monitored through determination of the diameter of the carotid artery. Hence, our data indicate that PKD is a new regulatory kinase of eNOS in endothelial cells whose activity orchestrates mammalian vascular tone.


Subject(s)
Carotid Arteries/pathology , Epithelial Cells/physiology , Nitric Oxide Synthase Type III/metabolism , Protein Kinase C/metabolism , Vasodilation/drug effects , Angiogenesis Inducing Agents , Animals , COS Cells , Carbazoles/pharmacology , Carotid Arteries/drug effects , Cell Movement/drug effects , Cell Movement/genetics , Chlorocebus aethiops , HEK293 Cells , Humans , Mice , Mice, Inbred Strains , Nitric Oxide/metabolism , Nitric Oxide Synthase Type III/genetics , Phosphorylation , Protein Kinase C/administration & dosage , Protein Kinase C/genetics , RNA, Small Interfering/genetics , Serine/metabolism , Signal Transduction/drug effects , Signal Transduction/genetics , Vascular Endothelial Growth Factor A/metabolism
16.
Circ Res ; 110(3): 439-49, 2012 Feb 03.
Article in English | MEDLINE | ID: mdl-22194624

ABSTRACT

RATIONALE: Atherosclerotic lesions develop in regions of disturbed flow, whereas laminar flow protects from atherogenesis; however, the mechanisms involved are not completely elucidated. Integrins are mechanosensors of shear stress in endothelial cells, and integrin-linked kinase (ILK) is important for blood vessel integrity and cardiovascular development. OBJECTIVES: To explore the role of ILK in vascular function by studying conditionally ILK-deficient (cKO) mice and human atherosclerotic arteries. RESULTS: ILK expression was detected in the endothelial cell layer of nonatherosclerotic vessels but was absent from the endothelium of atherosclerotic arteries. Live ultrasound imaging revealed that acetylcholine-mediated vasodilatation was impaired in cKO mice. These mice exhibited lowered agonist-induced nitric oxide synthase (NOS) activity and decreased cyclic guanosine monophosphate and nitrite production. ILK deletion caused endothelial NOS (eNOS) uncoupling, reflected in reduced tetrahydrobiopterin (BH4) levels, increased BH2 levels, decreased dihydrofolate reductase expression, and increased eNOS-dependent generation of superoxide accompanied by extensive vascular protein nitration. ILK reexpression prevented eNOS uncoupling in cKO cells, whereas superoxide formation was unaffected by ILK depletion in eNOS-KO cells, indicating eNOS as a primary source of superoxide anion. eNOS and ILK coimmunoprecipitated in aortic lysates from control animals, and eNOS-ILK-shock protein 90 interaction was detected in human normal mammary arteries but was absent from human atherosclerotic carotid arteries. eNOS-ILK interaction in endothelial cells was prevented by geldanamycin, suggesting heat shock protein 90 as a binding partner. CONCLUSIONS: Our results identify ILK as a regulatory partner of eNOS in vivo that prevents eNOS uncoupling, and suggest ILK as a therapeutic target for prevention of endothelial dysfunction related to shear stress-induced vascular diseases.


Subject(s)
Arteries/physiopathology , Atherosclerosis/physiopathology , Endothelium, Vascular/physiopathology , Nitric Oxide Synthase Type III/physiology , Protein Serine-Threonine Kinases/physiology , Vasomotor System/physiology , Aged , Aged, 80 and over , Animals , Cattle , Cells, Cultured , Cyclic GMP/physiology , Disease Models, Animal , Down-Regulation/physiology , Female , HSP90 Heat-Shock Proteins/physiology , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Nitric Oxide/physiology , Signal Transduction/physiology
17.
EMBO Mol Med ; 16(4): 755-783, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38514794

ABSTRACT

Cereblon/CRBN is a substrate-recognition component of the Cullin4A-DDB1-Roc1 E3 ubiquitin ligase complex. Destabilizing mutations in the human CRBN gene cause a form of autosomal recessive non-syndromic intellectual disability (ARNSID) that is modelled by knocking-out the mouse Crbn gene. A reduction in excitatory neurotransmission has been proposed as an underlying mechanism of the disease. However, the precise factors eliciting this impairment remain mostly unknown. Here we report that CRBN molecules selectively located on glutamatergic neurons are necessary for proper memory function. Combining various in vivo approaches, we show that the cannabinoid CB1 receptor (CB1R), a key suppressor of synaptic transmission, is overactivated in CRBN deficiency-linked ARNSID mouse models, and that the memory deficits observed in these animals can be rescued by acute CB1R-selective pharmacological antagonism. Molecular studies demonstrated that CRBN interacts physically with CB1R and impairs the CB1R-Gi/o-cAMP-PKA pathway in a ubiquitin ligase-independent manner. Taken together, these findings unveil that CB1R overactivation is a driving mechanism of CRBN deficiency-linked ARNSID and anticipate that the antagonism of CB1R could constitute a new therapy for this orphan disease.


Subject(s)
Adaptor Proteins, Signal Transducing , Memory Disorders , Ubiquitin-Protein Ligases , Animals , Mice , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Mutation , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Receptor, Cannabinoid, CB1/genetics , Receptor, Cannabinoid, CB1/metabolism , Memory Disorders/genetics , Memory Disorders/metabolism
18.
Neuropharmacology ; 240: 109712, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37689260

ABSTRACT

Cannabinoids exert pleiotropic effects on the brain by engaging the cannabinoid CB1 receptor (CB1R), a presynaptic metabotropic receptor that regulates key neuronal functions in a highly context-dependent manner. We have previously shown that CB1R interacts with growth-associated protein of 43 kDa (GAP43) and that this interaction inhibits CB1R function on hippocampal excitatory synaptic transmission, thereby impairing the therapeutic effect of cannabinoids on epileptic seizures in vivo. However, the underlying molecular features of this interaction remain unexplored. Here, we conducted mechanistic experiments on HEK293T cells co-expressing CB1R and GAP43 and show that GAP43 modulates CB1R signalling in a strikingly selective manner. Specifically, GAP43 did not affect the archetypical agonist-evoked (i) CB1R/Gi/o protein-coupled signalling pathways, such as cAMP/PKA and ERK, or (ii) CB1R internalization and intracellular trafficking. In contrast, GAP43 blocked an alternative agonist-evoked CB1R-mediated activation of the cytoskeleton-associated ROCK signalling pathway, which relied on the GAP43-mediated impairment of CB1R/Gq/11 protein coupling. GAP43 also abrogated CB1R-mediated ROCK activation in mouse hippocampal neurons, and this process led in turn to a blockade of cannabinoid-evoked neurite collapse. An NMR-based characterization of the CB1R-GAP43 interaction supported that GAP43 binds directly and specifically through multiple amino acid stretches to the C-terminal domain of the receptor. Taken together, our findings unveil a CB1R-Gq/11-ROCK signalling axis that is selectively impaired by GAP43 and may ultimately control neurite outgrowth.

19.
Nat Commun ; 14(1): 2303, 2023 04 21.
Article in English | MEDLINE | ID: mdl-37085487

ABSTRACT

The type-1 cannabinoid receptor (CB1R) is widely expressed in excitatory and inhibitory nerve terminals, and by suppressing neurotransmitter release, its activation modulates neural circuits and brain function. While the interaction of CB1R with various intracellular proteins is thought to alter receptor signaling, the identity and role of these proteins are poorly understood. Using a high-throughput proteomic analysis complemented with an array of in vitro and in vivo approaches in the mouse brain, we report that the C-terminal, intracellular domain of CB1R interacts specifically with growth-associated protein of 43 kDa (GAP43). The CB1R-GAP43 interaction occurs selectively at mossy cell axon boutons, which establish excitatory synapses with dentate granule cells in the hippocampus. This interaction impairs CB1R-mediated suppression of mossy cell to granule cell transmission, thereby inhibiting cannabinoid-mediated anti-convulsant activity in mice. Thus, GAP43 acts as a synapse type-specific regulatory partner of CB1R that hampers CB1R-mediated effects on hippocampal circuit function.


Subject(s)
Cannabinoids , Mice , Animals , Cannabinoids/pharmacology , Cannabinoids/metabolism , Proteomics , Hippocampus/metabolism , Synaptic Transmission , Synapses/metabolism , Receptors, Cannabinoid/metabolism , Receptor, Cannabinoid, CB1/genetics , Receptor, Cannabinoid, CB1/metabolism
20.
Biochemistry ; 51(37): 7403-16, 2012 Sep 18.
Article in English | MEDLINE | ID: mdl-22946928

ABSTRACT

We have recombinantly expressed and purified the ligand binding domains (LBDs) of four insect nuclear receptors of the E75 family. The Drosophila melanogaster and Bombyx mori nuclear receptors were purified as ferric hemoproteins with Soret maxima at 424 nm, whereas their ferrous forms had a Soret maximum at 425 nm that responds to (•)NO and CO binding. In contrast, the purified LBD of Oncopeltus fasciatus displayed a Soret maximum at 415 nm for the ferric protein that shifted to 425 nm in its ferrous state. Binding of (•)NO to the heme moiety of the D. melanogaster and B. mori E75 LBD resulted in the appearance of a peak at 385 nm, whereas this peak appeared at 416 nm in the case of the O. fasciatus hemoprotein, resembling the behavior displayed by its human homologue, Rev-erbß. High-performance liquid chromatography analysis revealed that, unlike the D. melanogaster and B. mori counterparts, the heme group of O. fasciatus is covalently attached to the protein through the side chains of two amino acids. The high degree of sequence homology with O. fasciatus E75 led us to clone and express the LBD of Blattella germanica, which established that its spectral properties closely resemble those of O. fasciatus and that it also has the heme group covalently bound to the protein. Hence, (•)NO/CO regulation of the transcriptional activity of these nuclear receptors might be differently controlled among various insect species. In addition, covalent heme binding provides strong evidence that at least some of these nuclear receptors function as diatomic gas sensors rather than heme sensors. Finally, our findings expand the classes of hemoproteins in which the heme group is normally covalently attached to the polypeptide chain.


Subject(s)
DNA-Binding Proteins/chemistry , Drosophila Proteins/chemistry , Heme/chemistry , Insect Proteins/chemistry , Nitric Oxide/chemistry , Receptors, Steroid/chemistry , Animals , Bombyx , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster , Heme/genetics , Heme/metabolism , Humans , Insect Proteins/genetics , Insect Proteins/metabolism , Nitric Oxide/genetics , Nitric Oxide/metabolism , Protein Structure, Tertiary , Receptors, Steroid/genetics , Receptors, Steroid/metabolism , Sequence Homology, Amino Acid , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL