Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Publication year range
1.
Nat Commun ; 15(1): 5272, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902243

ABSTRACT

While myelodysplastic syndromes with del(5q) (del(5q) MDS) comprises a well-defined hematological subgroup, the molecular basis underlying its origin remains unknown. Using single cell RNA-seq (scRNA-seq) on CD34+ progenitors from del(5q) MDS patients, we have identified cells harboring the deletion, characterizing the transcriptional impact of this genetic insult on disease pathogenesis and treatment response. Interestingly, both del(5q) and non-del(5q) cells present similar transcriptional lesions, indicating that all cells, and not only those harboring the deletion, may contribute to aberrant hematopoietic differentiation. However, gene regulatory network (GRN) analyses reveal a group of regulons showing aberrant activity that could trigger altered hematopoiesis exclusively in del(5q) cells, pointing to a more prominent role of these cells in disease phenotype. In del(5q) MDS patients achieving hematological response upon lenalidomide treatment, the drug reverts several transcriptional alterations in both del(5q) and non-del(5q) cells, but other lesions remain, which may be responsible for potential future relapses. Moreover, lack of hematological response is associated with the inability of lenalidomide to reverse transcriptional alterations. Collectively, this study reveals transcriptional alterations that could contribute to the pathogenesis and treatment response of del(5q) MDS.


Subject(s)
Antigens, CD34 , Chromosome Deletion , Chromosomes, Human, Pair 5 , Hematopoietic Stem Cells , Lenalidomide , Myelodysplastic Syndromes , Single-Cell Analysis , Humans , Lenalidomide/pharmacology , Lenalidomide/therapeutic use , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/drug therapy , Myelodysplastic Syndromes/pathology , Myelodysplastic Syndromes/metabolism , Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/metabolism , Antigens, CD34/metabolism , Chromosomes, Human, Pair 5/genetics , Male , Female , Aged , Gene Regulatory Networks/drug effects , Middle Aged , Hematopoiesis/drug effects , Hematopoiesis/genetics , Transcriptome , Aged, 80 and over , RNA-Seq , Gene Expression Profiling
SELECTION OF CITATIONS
SEARCH DETAIL