Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Horm Behav ; 159: 105477, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38245919

ABSTRACT

Selecting an attractive mate can involve trade-offs related to investment in sampling effort. Glucocorticoids like corticosterone (CORT) are involved in resolving energetic trade-offs. However, CORT is rarely studied in the context of mate choice, despite its elevated levels during reproductive readiness and the energetic transitions that characterize reproduction. Few systems are as well suited as anuran amphibians to evaluate how females resolve energetic trade-offs during mate choice. Phonotaxis tests provide a robust bioassay of mate choice that permit the precise measurement of inter-individual variation in traits such as choosiness-the willingness to pursue the most attractive mate despite costs. In Cope's gray treefrogs (Hyla chrysoscelis), females exhibit remarkable variation in circulating CORT as well as choosiness during mate choice, and a moderate dose of exogenous CORT rapidly (<1 h) and reliably induce large increases in choosiness. Here we measured the expression of glucocorticoid (GR) and mineralocorticoid (MR) receptors in the brains of females previously treated with exogenous CORT and tested for mate choosiness. We report a large decrease in GR expression in the hindbrain and midbrain of females that were treated with the moderate dosage of CORT-the same treatment group that exhibited a dramatic increase in choosiness following CORT treatment. This association, however, does not appear to be causal, as only forebrain GR levels, which are not affected by CORT injection, are positively associated with variation in choosiness. No strong effects were found for MR. We discuss these findings and suggest future studies to test the influence of glucocorticoids on mate choice.


Subject(s)
Anura , Corticosterone , Animals , Female , Corticosterone/pharmacology , Glucocorticoids , Brain , Reproduction
2.
Proc Natl Acad Sci U S A ; 117(31): 18566-18573, 2020 08 04.
Article in English | MEDLINE | ID: mdl-32675244

ABSTRACT

Dominant individuals are often most influential in their social groups, affecting movement, opinion, and performance across species and contexts. Yet, behavioral traits like aggression, intimidation, and coercion, which are associated with and in many cases define dominance, can be socially aversive. The traits that make dominant individuals influential in one context may therefore reduce their influence in other contexts. Here, we examine this association between dominance and influence using the cichlid fish Astatotilapia burtoni, comparing the influence of dominant and subordinate males during normal social interactions and in a more complex group consensus association task. We find that phenotypically dominant males are aggressive, socially central, and that these males have a strong influence over normal group movement, whereas subordinate males are passive, socially peripheral, and have little influence over normal movement. However, subordinate males have the greatest influence in generating group consensus during the association task. Dominant males are spatially distant and have lower signal-to-noise ratios of informative behavior in the association task, potentially interfering with their ability to generate group consensus. In contrast, subordinate males are physically close to other group members, have a high signal-to-noise ratio of informative behavior, and equivalent visual connectedness to their group as dominant males. The behavioral traits that define effective social influence are thus highly context specific and can be dissociated with social dominance. Thus, processes of hierarchical ascension in which the most aggressive, competitive, or coercive individuals rise to positions of dominance may be counterproductive in contexts where group performance is prioritized.


Subject(s)
Decision Making/physiology , Social Dominance , Aggression/physiology , Animals , Cichlids/physiology , Consensus , Female , Male
3.
Proc Biol Sci ; 289(1974): 20220135, 2022 05 11.
Article in English | MEDLINE | ID: mdl-35506226

ABSTRACT

Learning and decision-making are greatly influenced by context. When navigating a complex social world, individuals must quickly ascertain where to gain important resources and which group members are useful sources of such information. Such dynamic behavioural processes require neural mechanisms that are flexible across contexts. Here we examine how the social context influences the learning response during a cue discrimination task and the neural activity patterns that underlie acquisition of this novel information. Using the cichlid fish, Astatotilapia burtoni, we show that learning of the task is faster in social groups than in a non-social context. We quantify the neural activity patterns by examining the expression of Fos, an immediate-early gene, across brain regions known to play a role in social behaviour and learning (such as the putative teleost homologues of the mammalian hippocampus, basolateral amygdala and medial amygdala/BNST complex). We find that neural activity patterns differ between social and non-social contexts. Taken together, our results suggest that while the same brain regions may be involved in the learning of a cue association, the activity in each region reflects an individual's social context.


Subject(s)
Behavior, Animal , Cichlids , Animals , Behavior, Animal/physiology , Brain/metabolism , Cichlids/physiology , Learning , Mammals , Social Behavior
4.
Environ Health Perspect ; 126(9): 97005, 2018 09.
Article in English | MEDLINE | ID: mdl-30212226

ABSTRACT

BACKGROUND: Exposure to endocrine-disrupting chemicals (EDCs) during gestation influences development of the F1 generation offspring and can result in disease and dysfunction in adulthood. Limited evidence suggests consequences on the F2 generation, exposed as germ cells within the F1 fetus. These F2s provide a unique window into the programming effects of EDCs. OBJECTIVE: This study assessed intergenerational effects of EDC exposure on adult physiology and behavior in Sprague-Dawley rats. METHODS: Pregnant rats were exposed to either a polychlorinated biphenyl (PCB) mixture, Aroclor 1,221 (A1221), the fungicide vinclozolin (VIN), or the vehicle (VEH) (6% dimethylsulfoxide in sesame oil) alone. A1221 is weakly estrogenic, while VIN is antiandrogenic, enabling us to compare different classes of EDCs. The F1 male and female offspring were bred to generate the paternal- and maternal-lineage F2 generation. This F2 generation was assessed for physiological outcomes, ultrasonic vocalizations (USVs), and sexual behavior in adulthood. RESULTS: Each EDC caused phenotypic effects in a sex- and lineage-dependent manner. The most robustly affected group was the paternal-lineage males. F2 VIN paternal male descendants had increased body weight throughout the lifespan, lower concentrations of circulating estradiol, and lower adrenal and testicular indices. Both VIN and A1221 paternal-lineage males also exhibited the greatest number of changes in the characteristics of USVs in response to an opposite-sex animal and changes in sexual behaviors in a mating test. CONCLUSION: Exposure of rats to EDCs at the germ cell stage led to differences in the physiological and behavioral phenotype later in life, especially in males. This finding has implications for multigenerational physiological and reproductive health in wildlife and humans. https://doi.org/10.1289/EHP3550.


Subject(s)
Aroclors/adverse effects , Environmental Pollutants/adverse effects , Oxazoles/adverse effects , Polychlorinated Biphenyls/adverse effects , Prenatal Exposure Delayed Effects/physiopathology , Animals , Endocrine Disruptors/adverse effects , Female , Fungicides, Industrial/adverse effects , Male , Maternal Inheritance , Paternal Inheritance , Phenotype , Pregnancy , Prenatal Exposure Delayed Effects/chemically induced , Prenatal Exposure Delayed Effects/genetics , Rats , Rats, Sprague-Dawley , Sex Factors
5.
Behav Brain Res ; 347: 332-338, 2018 07 16.
Article in English | MEDLINE | ID: mdl-29580893

ABSTRACT

Many psychiatric disorders are associated with cognitive dysfunction that is ineffectively treated by existing pharmacotherapies and which may contribute to poor real-world functioning. D-cycloserine (DCS) is a partial N-methyl-D-aspartate (NMDA) agonist that has attracted attention because of its cognitive enhancing properties, including in people with post-traumatic stress disorder (PTSD). Here, we examined the effect of DCS on reversal learning - a type of cognitive flexibility - following exposure to single prolonged stress (SPS), a rodent model of PTSD. Male Sprague Dawley rats (n = 64) were trained to press levers in an operant chamber, matched for performance and assigned to SPS or control (unstressed) groups. Following SPS, rats received three additional lever press sessions, followed by a side bias test on day three. One day later they learned a response discrimination rule (press left or right lever, opposite to side bias) and on a subsequent day were trained (and tested) for reversal to the opposite lever. DCS (15 mg/kg) or vehicle was administered 30 minutes prior to the reversal session. No between-group differences were found in acquisition or retrieval of the initial rule, but a significant drug x stress interaction on response discrimination reversal indicated that DCS had a greater beneficial effect on SPS rats' cognitive flexibility than it did on performance in controls. These findings add to a growing literature on the beneficial effects of DCS for treating a wide variety of deficits that develop following exposure to extreme stress and may have implications for the development of novel pharmacotherapies for PTSD.


Subject(s)
Cycloserine/pharmacology , Psychotropic Drugs/pharmacology , Reversal Learning/drug effects , Stress Disorders, Post-Traumatic/drug therapy , Animals , Discrimination, Psychological/drug effects , Disease Models, Animal , Male , Mental Recall/drug effects , Rats, Sprague-Dawley , Receptors, N-Methyl-D-Aspartate/agonists , Stress Disorders, Post-Traumatic/psychology
6.
Article in English | MEDLINE | ID: mdl-28855890

ABSTRACT

Nonapeptides play a fundamental role in the regulation of social behavior, among numerous other functions. In particular, arginine vasopressin and its non-mammalian homolog, arginine vasotocin (AVT), have been implicated in regulating affiliative, reproductive, and aggressive behavior in many vertebrate species. Where these nonapeptides are synthesized in the brain has been studied extensively in most vertebrate lineages. While several hypothalamic and forebrain populations of vasopressinergic neurons have been described in amniotes, the consensus suggests that the expression of AVT in the brain of teleost fish is limited to the hypothalamus, specifically the preoptic area (POA) and the anterior tuberal nucleus (putative homolog of the mammalian ventromedial hypothalamus). However, as most studies in teleosts have focused on the POA, there may be an ascertainment bias. Here, we revisit the distribution of AVT preprohormone mRNA across the dorsal and ventral telencephalon of a highly social African cichlid fish. We first use in situ hybridization to map the distribution of AVT preprohormone mRNA across the telencephalon. We then use quantitative real-time polymerase chain reaction to assay AVT expression in the dorsomedial telencephalon, the putative homolog of the mammalian basolateral amygdala. We find evidence for AVT preprohormone mRNA in regions previously not associated with the expression of this nonapeptide, including the putative homologs of the mammalian extended amygdala, hippocampus, striatum, and septum. In addition, AVT preprohormone mRNA expression within the basolateral amygdala homolog differs across social contexts, suggesting a possible role in behavioral regulation. We conclude that the surprising presence of AVT preprohormone mRNA within dorsal and medial telencephalic regions warrants a closer examination of possible AVT synthesis locations in teleost fish, and that these may be more similar to what is observed in mammals and birds.

7.
Endocrinology ; 157(7): 2785-98, 2016 07.
Article in English | MEDLINE | ID: mdl-27145013

ABSTRACT

Normal glucocorticoid secretion is critical for physiological and mental health. Glucocorticoid secretion is dynamically regulated by glucocorticoid-negative feedback; however, the mechanisms of that feedback process are poorly understood. We assessed the temporal characteristics of glucocorticoid-negative feedback in vivo using a procedure for drug infusions and serial blood collection in unanesthetized rats that produced a minimal disruption of basal ACTH plasma levels. We compared the negative feedback effectiveness present when stress onset coincides with corticosterone's (CORT) rapidly rising phase (30 sec pretreatment), high plateau phase (15 min pretreatment), or restored basal phase (60 min pretreatment) as well as effectiveness when CORT infusion occurs after the onset of stress (5 min poststress onset). CORT treatment prior to stress onset acted remarkably fast (within 30 sec) to suppress stress-induced ACTH secretion. Furthermore, fast feedback induction did not require rapid increases in CORT at the time of stress onset (hormone rate independent), and those feedback actions were relatively long lasting (≥15 min). In contrast, CORT elevation after stress onset produced limited and delayed ACTH suppression (stress state resistance). There was a parallel stress-state resistance for CORT inhibition of stress-induced Crh heteronuclear RNA in the paraventricular nucleus but not Pomc heteronuclear RNA in the anterior pituitary. CORT treatment did not suppress stress-induced prolactin secretion, suggesting that CORT feedback is restricted to the control of hypothalamic-pituitary-adrenal axis elements of a stress response. These temporal, stress-state, and system-level features of in vivo CORT feedback provide an important physiological context for ex vivo studies of molecular and cellular mechanisms of CORT-negative feedback.


Subject(s)
Adrenocorticotropic Hormone/metabolism , Corticosterone/pharmacology , Feedback, Physiological/drug effects , Hypothalamo-Hypophyseal System/drug effects , Pituitary-Adrenal System/drug effects , Stress, Physiological/drug effects , Stress, Psychological/metabolism , Adrenalectomy , Animals , Corticotropin-Releasing Hormone/metabolism , Hypothalamo-Hypophyseal System/metabolism , Hypothalamo-Hypophyseal System/physiopathology , Male , Paraventricular Hypothalamic Nucleus/metabolism , Pituitary-Adrenal System/metabolism , Pituitary-Adrenal System/physiopathology , Rats , Rats, Sprague-Dawley , Restraint, Physical , Stress, Physiological/physiology , Stress, Psychological/physiopathology
8.
Behav Brain Res ; 286: 256-64, 2015 Jun 01.
Article in English | MEDLINE | ID: mdl-25746511

ABSTRACT

Exposure to stressful or traumatic events is associated with increased vulnerability to post-traumatic stress disorder (PTSD). This vulnerability may be partly mediated by effects of stress on the prefrontal cortex (PFC) and associated circuitry. The PFC mediates critical cognitive functions, including cognitive flexibility, which reflects an organism's ability to adaptively alter behavior in light of changing contingencies. Prior work suggests that chronic or acute stress exerts complex effects on different forms of cognitive flexibility, via actions on the PFC. Similarly, PFC dysfunction is reported in PTSD, as are executive function deficits. Animal models that permit study of the effects of stress/trauma on cognitive flexibility may be useful in illuminating ways in which stress-linked cognitive changes contribute to PTSD. Here, we examined the behavioral effects of a rodent model of PTSD - single prolonged stress (SPS) - on performance of two forms of cognitive flexibility: reversal learning and strategy set-shifting. SPS did not impair acquisition of either a response or visual-cue discrimination but did cause slight impairments in the retrieval of the visual-cue rule. During response discrimination reversal, SPS rats made more perseverative errors. In comparison, during set-shifting from the visual-cue to response discrimination, SPS rats did not show enhanced perseveration, but did display increased never-reinforced errors, indicative of impairment in selecting a novel strategy. These data demonstrate that SPS leads to a complex and intriguing pattern of deficits in flexible responding and suggest that impairments in executive functioning associated with PTSD could, in part, be a neuro-cognitive consequence of trauma exposure.


Subject(s)
Executive Function , Reversal Learning , Stress Disorders, Post-Traumatic/psychology , Animals , Conditioning, Operant , Cues , Discrimination, Psychological , Disease Models, Animal , Male , Neuropsychological Tests , Photic Stimulation , Rats, Sprague-Dawley , Visual Perception
9.
Psychopharmacology (Berl) ; 232(1): 47-56, 2015 Jan.
Article in English | MEDLINE | ID: mdl-24879497

ABSTRACT

RATIONALE: Post-traumatic stress disorder (PTSD) is a chronic, debilitating disorder. Only two pharmacological agents are approved for PTSD treatment, and they often do not address the full range of symptoms nor are they equally effective in all cases. Animal models of PTSD are critical for understanding the neurobiology involved and for identification of novel therapeutic targets. Using the rodent PTSD model, single prolonged stress (SPS), we have implicated aberrant excitatory neural transmission and glucocorticoid receptor (GR) upregulation in the medial prefrontal cortex (mPFC) and hippocampus (HPC) in fear memory abnormalities associated with PTSD. OBJECTIVE: The objective of this study is to examine the potential protective effect of antiepileptic phenytoin (PHE) administration on SPS-induced extinction retention deficits and GR expression. METHODS: Forty-eight SPS-treated male Sprague Dawley rats or controls were administered PHE (40, 20 mg/kg, vehicle) for 7 days following SPS stressors; then, fear conditioning, extinction, and extinction retention were tested. RESULTS: Fear conditioning and extinction were unaffected by SPS or PHE, but SPS impaired extinction retention, and both doses of PHE rescued this impairment. Similarly, SPS increased GR expression in the mPFC and dorsal HPC, and PHE prevented SPS-induced GR upregulation in the mPFC. CONCLUSIONS: These data demonstrate that PHE administration can prevent the development of extinction retention deficits and upregulation of GR. PHE exerts inhibitory effects on voltage-gated sodium channels and decreases excitatory neural transmission via glutamate antagonism. If glutamate hyperactivity in the days following SPS contributes to SPS-induced deficits, then these data may suggest that the glutamatergic system constitutes a target for secondary prevention.


Subject(s)
Extinction, Psychological/physiology , Phenytoin/administration & dosage , Prefrontal Cortex/metabolism , Receptors, Glucocorticoid/biosynthesis , Stress, Psychological/metabolism , Up-Regulation/physiology , Animals , Extinction, Psychological/drug effects , Fear/drug effects , Fear/physiology , Fear/psychology , Male , Memory/drug effects , Memory/physiology , Prefrontal Cortex/drug effects , Rats , Rats, Sprague-Dawley , Receptors, Glucocorticoid/antagonists & inhibitors , Stress, Psychological/prevention & control , Stress, Psychological/psychology , Treatment Outcome , Up-Regulation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL