Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Blood ; 136(4): 455-467, 2020 07 23.
Article in English | MEDLINE | ID: mdl-32483595

ABSTRACT

Tumor-associated antigens (TAAs) are monomorphic self-antigens that are proposed as targets for immunotherapeutic approaches to treat malignancies. We investigated whether T cells with sufficient avidity to recognize naturally overexpressed self-antigens in the context of self-HLA can be found in the T-cell repertoire of healthy donors. Minor histocompatibility antigen (MiHA)-specific T cells were used as a model, as the influence of thymic selection on the T-cell repertoire directed against MiHA can be studied in both self (MiHApos donors) and non-self (MiHAneg donors) backgrounds. T-cell clones directed against the HLA*02:01-restricted MiHA HA-1H were isolated from HA-1Hneg/HLA-A*02:01pos and HA-1Hpos/HLA-A*02:01pos donors. Of the 16 unique HA-1H-specific T-cell clones, five T-cell clones derived from HA-1Hneg/HLA-A*02:01pos donors and one T-cell clone derived from an HA-1Hpos/HLA-A*02:01pos donor showed reactivity against HA-1Hpos target cells. In addition, in total, 663 T-cell clones (containing at least 91 unique clones expressing different T-cell receptors) directed against HLA*02:01-restricted peptides of TAA WT1-RMF, RHAMM-ILS, proteinase-3-VLQ, PRAME-VLD, and NY-eso-1-SLL were isolated from HLA-A*02:01pos donors. Only 3 PRAME-VLD-specific and one NY-eso-1-SLL-specific T-cell clone provoked interferon-γ production and/or cytolysis upon stimulation with HLA-A*02:01pos malignant cell lines (but not primary malignant samples) naturally overexpressing the TAA. These results show that self-HLA-restricted T cells specific for self-antigens such as MiHA in MiHApos donors and TAAs are present in peripheral blood of healthy individuals. However, clinical efficacy would require highly effective in vivo priming by peptide vaccination in the presence of proper adjuvants or in vitro expansion of the low numbers of self-antigen-specific T cells of sufficient avidity to recognize endogenously processed antigen.


Subject(s)
Antigen Presentation , Antigens, Neoplasm/immunology , Cancer Vaccines/immunology , HLA-A2 Antigen/immunology , Minor Histocompatibility Antigens/immunology , T-Lymphocytes, Cytotoxic/immunology , Humans , Interferon-gamma/immunology , Peptides/immunology
2.
Cytotherapy ; 23(1): 46-56, 2021 01.
Article in English | MEDLINE | ID: mdl-32948458

ABSTRACT

BACKGROUND AIMS: To reduce the risk of graft-versus-host disease (GVHD) after allogeneic stem cell transplantation (alloSCT), T-cell depletion (TCD) of grafts can be performed by the addition of alemtuzumab (ALT) "to the bag" (in vitro) before transplantation. In this prospective study, the authors analyzed the effect of in vitro incubation with 20 mg ALT on the composition of grafts prior to graft infusion. Furthermore, the authors assessed whether graft composition at the moment of infusion was predictive for T-cell reconstitution and development of GVHD early after TCD alloSCT. METHODS: Sixty granulocyte colony-stimulating factor-mobilized stem cell grafts were obtained from ≥9/10 HLA-matched related and unrelated donors. The composition of the grafts was analyzed by flow cytometry before and after in vitro incubation with ALT. T-cell reconstitution and incidence of severe GVHD were monitored until 12 weeks after transplantation. RESULTS: In vitro incubation of grafts with 20 mg ALT resulted in an initial median depletion efficiency of T-cell receptor (TCR) α/ß T cells of 96.7% (range, 63.5-99.8%), followed by subsequent depletion in vivo. Graft volumes and absolute leukocyte counts of grafts before the addition of ALT were not predictive for the efficiency of TCR α/ß T-cell depletion. CD4pos T cells were depleted more efficiently than CD8pos T cells, and naive and regulatory T cells were depleted more efficiently than memory and effector T cells. This differential depletion of T-cell subsets was in line with their reported differential CD52 expression. In vitro depletion efficiencies and absolute numbers of (naive) TCR α/ß T cells in the grafts after ALT incubation were not predictive for T-cell reconstitution or development of GVHD post- alloSCT. CONCLUSIONS: The addition of ALT to the bag is an easy, fast and generally applicable strategy to prevent GVHD in patients receiving alloSCT after myeloablative or non-myeloablative conditioning because of the efficient differential depletion of donor-derived lymphocytes and T cells.


Subject(s)
Alemtuzumab/pharmacology , Hematopoietic Stem Cell Transplantation , Immune Reconstitution , Lymphocyte Depletion/methods , T-Lymphocyte Subsets/drug effects , Adult , Antineoplastic Agents, Immunological/pharmacology , Graft vs Host Disease/immunology , Humans , Male , Middle Aged , Prospective Studies , T-Lymphocyte Subsets/physiology
3.
Cytotherapy ; 20(4): 543-555, 2018 04.
Article in English | MEDLINE | ID: mdl-29449085

ABSTRACT

BACKGROUND: Adoptive transfer of donor-derived T cells can be applied to improve immune reconstitution in immune-compromised patients after allogeneic stem cell transplantation. The separation of beneficial T cells from potentially harmful T cells can be achieved by using the major histocompatibility complex (MHC) I-Streptamer isolation technology, which has proven its feasibility for the fast and pure isolation of T-cell populations with a single specificity. We have analyzed the feasibility of the simultaneous isolation of multiple antigen-specific T-cell populations in one procedure by combining different MHC I-Streptamers. METHODS: First, the effect of combining different amounts of MHC I-Streptamers used in the isolation procedure on the isolation efficacy of target antigen-specific T cells and on the number of off-target co-isolated contaminating cells was assessed. The feasibility of this approach was demonstrated in large-scale validation procedures targeting both high and low frequent T-cell populations using the Good Manufacturing Practice (GMP)-compliant CliniMACS Plus device. RESULTS: T-cell products targeting up to 24 different T-cell populations could be isolated in one, simultaneous MHC I-Streptamer procedure, by adjusting the amount of MHC I- Streptamers per target antigen-specific T-cell population. Concurrently, the co-isolation of potentially harmful contaminating T cells remained below our safety limit. This technology allows the reproducible isolation of high and low frequent T-cell populations. However, the expected therapeutic relevance of direct clinical application without in vitro expansion of these low frequent T-cell populations is questionable. DISCUSSION: This study provides a feasible, fast and safe method for the generation of highly personalized MHC I-Streptamer isolated T-cell products for adoptive immunotherapy.


Subject(s)
Histocompatibility Antigens Class I/metabolism , Immunomagnetic Separation/methods , Leukapheresis/methods , Leukocytes, Mononuclear/cytology , Oligopeptides/metabolism , Recombinant Fusion Proteins/metabolism , T-Lymphocyte Subsets/cytology , Cells, Cultured , Cytomegalovirus/immunology , Feasibility Studies , Hematopoietic Stem Cell Transplantation , Histocompatibility Antigens Class I/chemistry , Humans , Immunotherapy, Adoptive , Leukocytes, Mononuclear/classification , Leukocytes, Mononuclear/immunology , Oligopeptides/chemistry , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Recombinant Fusion Proteins/chemistry , T-Lymphocyte Subsets/classification , T-Lymphocytes/classification , T-Lymphocytes/cytology , T-Lymphocytes/immunology , Tissue Donors
4.
Front Immunol ; 13: 851868, 2022.
Article in English | MEDLINE | ID: mdl-35401538

ABSTRACT

Since multiple different T-cell receptor (TCR) sequences can bind to the same peptide-MHC combination and the number of TCR-sequences that can theoretically be generated even exceeds the number of T cells in a human body, the likelihood that many public identical (PUB-I) TCR-sequences frequently contribute to immune responses has been estimated to be low. Here, we quantitatively analyzed the TCR-repertoires of 190 purified virus-specific memory T-cell populations, directed against 21 epitopes of Cytomegalovirus, Epstein-Barr virus and Adenovirus isolated from 29 healthy individuals, and determined the magnitude, defined as prevalence within the population and frequencies within individuals, of PUB-I TCR and of TCR-sequences that are highly-similar (PUB-HS) to these PUB-I TCR-sequences. We found that almost one third of all TCR nucleotide-sequences represented PUB-I TCR amino-acid (AA) sequences and found an additional 12% of PUB-HS TCRs differing by maximally 3 AAs. We illustrate that these PUB-I and PUB-HS TCRs were structurally related and contained shared core-sequences in their TCR-sequences. We found a prevalence of PUB-I and PUB-HS TCRs of up to 50% among individuals and showed frequencies of virus-specific PUB-I and PUB-HS TCRs making up more than 10% of each virus-specific T-cell population. These findings were confirmed by using an independent TCR-database of virus-specific TCRs. We therefore conclude that the magnitude of the contribution of PUB-I and PUB-HS TCRs to these virus-specific T-cell responses is high. Because the T cells from these virus-specific memory TCR-repertoires were the result of successful control of the virus in these healthy individuals, these PUB-HS TCRs and PUB-I TCRs may be attractive candidates for immunotherapy in immunocompromised patients that lack virus-specific T cells to control viral reactivation.


Subject(s)
Epstein-Barr Virus Infections , Cytomegalovirus , Herpesvirus 4, Human , Humans , Receptors, Antigen, T-Cell , T-Lymphocytes
5.
Leukemia ; 34(3): 831-844, 2020 03.
Article in English | MEDLINE | ID: mdl-31624377

ABSTRACT

Prophylactic infusion of selected donor T cells can be an effective method to restore specific immunity after T-cell-depleted allogeneic stem cell transplantation (TCD-alloSCT). In this phase I/II study, we aimed to reduce the risk of viral complications and disease relapses by administrating donor-derived CD8pos T cells directed against cytomegalovirus (CMV), Epstein-Barr virus (EBV) and adenovirus antigens, tumor-associated antigens (TAA) and minor histocompatibility antigens (MiHA). Twenty-seven of thirty-six screened HLA-A*02:01pos patients and their CMVpos and/or EBVpos donors were included. Using MHC-I-Streptamers, 27 T-cell products were generated containing a median of 5.2 × 106 cells. Twenty-four products were administered without infusion-related complications at a median of 58 days post alloSCT. No patients developed graft-versus-host disease during follow-up. Five patients showed disease progression without coinciding expansion of TAA/MiHA-specific T cells. Eight patients experienced CMV- and/or EBV-reactivations. Four of these reactivations were clinically relevant requiring antiviral treatment, of which two progressed to viral disease. All resolved ultimately. In 2/4 patients with EBV-reactivations and 6/8 patients with CMV-reactivations, viral loads were followed by the expansion of donor-derived virus target-antigen-specific T cells. In conclusion, generation of multi-antigen-specific T-cell products was feasible, infusions were well tolerated and expansion of target-antigen-specific T cells coinciding viral reactivations was illustrated in the majority of patients.


Subject(s)
Hematologic Neoplasms/therapy , Stem Cell Transplantation , T-Lymphocytes/immunology , Adenoviridae Infections/prevention & control , Adult , Aged , Antigens, Neoplasm/immunology , CD8-Positive T-Lymphocytes/cytology , Cytomegalovirus Infections/prevention & control , Epstein-Barr Virus Infections/prevention & control , Feasibility Studies , Female , Hematologic Neoplasms/complications , Hematologic Neoplasms/immunology , Humans , Immunotherapy , Male , Middle Aged , Minor Histocompatibility Antigens/immunology , Patient Safety , Transplantation, Homologous
6.
J Exp Med ; 215(5): 1493-1504, 2018 05 07.
Article in English | MEDLINE | ID: mdl-29666167

ABSTRACT

Adaptive immunity is initiated by T cell recognition of specific antigens presented by major histocompatibility complexes (MHCs). MHC multimer technology has been developed for the detection, isolation, and characterization of T cells in infection, autoimmunity, and cancer. Here, we present a simple, fast, flexible, and efficient method to generate many different MHC class I (MHC I) multimers in parallel using temperature-mediated peptide exchange. We designed conditional peptides for HLA-A*02:01 and H-2Kb that form stable peptide-MHC I complexes at low temperatures, but dissociate when exposed to a defined elevated temperature. The resulting conditional MHC I complexes, either alone or prepared as ready-to-use multimers, can swiftly be loaded with peptides of choice without additional handling and within a short time frame. We demonstrate the ease and flexibility of this approach by monitoring the antiviral immune constitution in an allogeneic stem cell transplant recipient and by analyzing CD8+ T cell responses to viral epitopes in mice infected with lymphocytic choriomeningitis virus or cytomegalovirus.


Subject(s)
Epitopes/immunology , Histocompatibility Antigens Class I/metabolism , Protein Multimerization , T-Lymphocytes/cytology , T-Lymphocytes/immunology , Amino Acid Sequence , Animals , CD8-Positive T-Lymphocytes/immunology , Cytomegalovirus/physiology , HLA-A Antigens/immunology , Herpesvirus 4, Human/physiology , Humans , Mice, Inbred C57BL , Monitoring, Immunologic , Peptides/chemistry , Peptides/metabolism , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL