Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Crit Rev Biotechnol ; 43(5): 753-769, 2023 Dec.
Article in English | MEDLINE | ID: mdl-35658758

ABSTRACT

Polyunsaturated fatty acids (PUFAs) have beneficial roles in a variety of human pathologies and disorders. Owing to the limited source of PUFAs in animals and plants, microorganisms, especially fungi, have become a new source of PUFAs. In fungi, fatty acid desaturases (F-FADS) are the main enzymes that convert saturated fatty acids (SFAs) into PUFAs. Their catalytic activities and substrate specificities, which are directly dependent on the structure of the FADS proteins, determine their efficiency to convert SFAs to PUFAs. Catalytic mechanisms underlying F-FADS activities can be determined from the findings of the relationship between their structure and function. In this review, the advances made in the past decade in terms of catalytic activities and substrate specificities of the fungal FADS cluster are summarized. The relationship between the key domain(s) and site(s) in F-FADS proteins and their catalytic activity is highlighted, and the FADS cluster is analyzed phylogenetically. In addition, subcellular localization of F-FADS is discussed. Finally, we provide prospective crystal structures of F-FADSs. The findings may provide a reference for the resolution of the crystal structures of F-FADS proteins and facilitate the increase in fungal PUFA production for human health.


Subject(s)
Fatty Acid Desaturases , Fatty Acids, Unsaturated , Animals , Humans , Prospective Studies , Fatty Acids, Unsaturated/metabolism , Fatty Acid Desaturases/metabolism , Fatty Acids , Plants/metabolism
2.
Int J Mol Sci ; 20(7)2019 Mar 30.
Article in English | MEDLINE | ID: mdl-30935072

ABSTRACT

Although various ω-3 fatty acid desaturases (ω3Des) have been identified and well-studied regarding substrate preference and regiospecificity, the molecular mechanism of their substrate specificities remains to be investigated. Here we compared two ω3Des, FADS15 from Mortierella alpina and oRiFADS17 from Rhizophagus irregularis, which possessed a substrate preference for linoleic acid and arachidonic acid, respectively. Their sequences were divided into six sections and a domain-swapping strategy was used to test the role of each section in catalytic activity. Heterologous expression and fatty acid experiments of hybrid enzymes in Saccharomyces cerevisiae INVSc1 indicated that the sequences between his-boxes I and II played critical roles in influencing substrate preference. Based on site-directed mutagenesis and molecular docking, the amino acid substitutions W129T and T144W, located in the upper part of the hydrocarbon chain, were found to be involved in substrate specificity, while V137T and V152T were confirmed to interfere with substrate recognition. This study provides significant insight into the structure-function relationship of ω3Des.


Subject(s)
Fatty Acid Desaturases/chemistry , Fungal Proteins/chemistry , Glomeromycota/enzymology , Molecular Docking Simulation , Mortierella/enzymology , Arachidonic Acid/chemistry , Binding Sites , Fatty Acid Desaturases/metabolism , Fungal Proteins/metabolism , Linoleic Acid/metabolism , Protein Binding , Substrate Specificity
3.
Appl Microbiol Biotechnol ; 102(22): 9679-9689, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30255230

ABSTRACT

The ω-3 fatty acid desaturase (ω3Des) is a key enzyme in the biosynthesis of polyunsaturated fatty acids (PUFAs). However, the enzyme exhibits a significant preference towards different fatty acid substrates. To examine the molecular mechanism of its substrate specificity, a series of site-directed mutants were constructed based on the membrane topology model and functionally characterised by heterologous expression in Saccharomyces cerevisiae. Our results revealed that the W106F and V137T mutations markedly decreased the enzyme activity which indicated that these two residues were associated with substrate recognition. In contrast, the A44S, M156I and W291M mutations showed significant increments (30 to 40%) of the conversion rate for AA substrate desaturation, which suggests that these residues play a pivotal role in desaturation of longer chain-length substrates. Through homology modelling of 3-dimensional structures and molecular docking of FADS15, we propose that the critical residues that bind to the CoA groups may affect substrate localisation and govern substrate preference and chain-length specificity. Our work increases the understanding of the structure-function relationships of the microbial membrane-bound desaturases. The growing knowledge of the molecular mechanism will also aid in the efficient production of value-added fatty acids.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Fatty Acid Desaturases/chemistry , Fatty Acid Desaturases/genetics , Fatty Acids/metabolism , Mortierella/enzymology , Amino Acid Sequence , Bacterial Proteins/metabolism , DNA Mutational Analysis , Fatty Acid Desaturases/metabolism , Fatty Acids/chemistry , Molecular Docking Simulation , Mortierella/chemistry , Mortierella/genetics , Mutation, Missense , Sequence Alignment , Substrate Specificity
4.
Front Microbiol ; 15: 1389737, 2024.
Article in English | MEDLINE | ID: mdl-38756727

ABSTRACT

Introduction: The starter used in solid-state fermentation (SSF) vinegar, known as seed Pei is a microbial inoculant from the previous batch that is utilized during the acetic acid fermentation stage. The seed Pei, which has a notable impact on vinegar fermentation and flavor, is under-researched with comparative studies on microorganisms. Methods: Herein metagenomics was employed to reveal the microbes and their potential metabolic functions of four seed Pei from three regions in China. Results: The predominant microbial taxa in all four starters were bacteria, followed by viruses, eukaryotes, and archaea, with Lactobacillus sp. or Acetobacter sp. as main functional taxa. The seed Pei used in Shanxi aged vinegar (SAV) and Sichuan bran vinegar (SBV) exhibited a higher similarity in microbial composition and distribution of functional genes, while those used in two Zhenjiang aromatic vinegar (ZAV) differed significantly. Redundancy analysis (RDA) of physicochemical factors and microbial communities indicated that moisture content, pH, and reducing sugar content are significant factors influencing microbial distribution. Moreover, seven metagenome-assembled genomes (MAGs) that could potentially represent novel species were identified. Conclusions: There are distinctions in the microbiome and functional genes among different seed Pei. The vinegar starters were rich in genes related to carbohydrate metabolism. This research provides a new perspective on formulating vinegar fermentation starters and developing commercial fermentation agents for vinegar production.

5.
Microb Cell Fact ; 11: 51, 2012 Jul 04.
Article in English | MEDLINE | ID: mdl-22545818

ABSTRACT

BACKGROUND: Conjugated linoleic acid (CLA) has many well-documented beneficial physiological effects. Due to the insufficient natural supply of CLA and low specificity of chemically produced CLA, an effective and isomer-specific production process is required for medicinal and nutritional purposes. RESULTS: The linoleic acid isomerase gene from Propionibacterium acnes was expressed in Yarrowia lipolytica Polh. Codon usage optimization of the PAI and multi-copy integration significantly improved the expression level of PAI in Y. lipolytica. The percentage of trans-10, cis-12 CLA was six times higher in yeast carrying the codon-optimized gene than in yeast carrying the native gene. In combination with multi-copy integration, the production yield was raised to approximately 30-fold. The amount of trans-10, cis-12 CLA reached 5.9% of total fatty acid yield in transformed Y. lipolytica. CONCLUSIONS: This is the first report of production of trans-10, cis-12 CLA by the oleaginous yeast Y. lipolytica, using glucose as the sole carbon source through expression of linoleic acid isomerase from Propionibacterium acnes.


Subject(s)
Linoleic Acids, Conjugated/biosynthesis , Yarrowia/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Glucose/metabolism , Isomerases/genetics , Isomerases/metabolism , Propionibacterium acnes/enzymology , Stereoisomerism , Yarrowia/genetics
6.
Bioengineered ; 13(3): 5892-5902, 2022 03.
Article in English | MEDLINE | ID: mdl-35188864

ABSTRACT

Poly(ε-L-lysine) and poly(L-diaminopropionic acid) are valuable homopoly (amino acids) with antimicrobial properties and mainly produced in submerged fermentation. In this study, we investigated their co-production using waste biomass and spent mushroom substrate in solid-state fermentation. Simultaneous production of poly(L-diaminopropionic acid) and poly(ε-L-lysine) was achieved in a single fermentation process using pearl oyster mushroom residues as substrate, with the supplement of glycerol and corn steep liquor. After optimization of the fermentation parameters, the maximum yield of poly(ε-L-lysine) and poly(L-diaminopropionic acid) reached 51.4 mg/g substrate and 25.4 mg/g substrate, respectively. The optimal fermentation conditions were 70% initial moisture content, pH of 6.5, 30°C and an inoculum size of 14%. Furthermore, the fermentation time was reduced from 8 days to 6 days using repeated-batch solid-state fermentation. Finally, the antimicrobial effects of poly(L-diaminopropionic acid) and poly(ε-L-lysine) were evaluated in freshly pressed grape juice, which indicated tremendous potential of this mixture in its use as biological preservative.


Subject(s)
Agaricales , Streptomyces , Fermentation , Food Preservatives/pharmacology , Polylysine
7.
RSC Adv ; 9(12): 6871-6880, 2019 Feb 22.
Article in English | MEDLINE | ID: mdl-35518462

ABSTRACT

Fatty acid desaturases are key enzymes in the biosynthesis of n-3 polyunsaturated fatty acids (PUFAs) via conversion of n-6 polyunsaturates to their n-3 counterparts. In this study, we reported the characterization and molecular docking of Δ17 desaturases from Rhizophagus irregularis and Octopus bimaculoides. These two new desaturase genes were screened using the known Δ17 desaturase gene (oPaFADS17) from Pythium aphanidermatum as a template. Analysis of their genes revealed that the sequences of oRiFADS17 and oObFADS17 contained the typical His-rich motifs (one HXXXH and two HXXHH). They were then expressed in Saccharomyces cerevisiae INVSc1 to examine their activities and substrate preferences. Our results show that the two candidate n-3 desaturases possess a strong Δ17 desaturase activity, exhibiting remarkable increase in desaturation activity on C20 fatty acids compared to C18 fatty acids. To the best of our knowledge, oRiFADS17 desaturase has greater (3-4 fold) catalytic activity for C18 substrates than other reported Δ17 desaturases and oObFADS17 is the first reported Δ17 desaturase in sea mollusks. Characterization of these two new desaturases will be of greater value for genetic engineering in industrial production of eicosapentaenoic acid (EPA, C20:5n-3) and docosahexaenoic acid (DHA, C22:6n-3). Due to lack of crystal structure information about n-3 desaturases, for the first time, the view of their predicted structures, binding pockets and substrate tunnels was clearly observed based on molecular docking. This will contribute to strengthening our understanding of the structure-function relationships of n-3 fatty acid desaturases.

SELECTION OF CITATIONS
SEARCH DETAIL