Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Chem Res Toxicol ; 37(8): 1306-1314, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39066735

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the dysfunction and death of motor neurons through multifactorial mechanisms that remain unclear. ALS has been recognized as a multisystemic disease, and the potential role of skeletal muscle in disease progression has been investigated. Reactive aldehydes formed as secondary lipid peroxidation products in the redox processes react with biomolecules, such as DNA, proteins, and amino acids, resulting in cytotoxic effects. 4-Hydroxy-2-nonenal (HNE) levels are elevated in the spinal cord motor neurons of ALS patients, and HNE-modified proteins have been identified in the spinal cord tissue of an ALS transgenic mice model, suggesting that reactive aldehydes can contribute to motor neuron degeneration in ALS. One biological pathway of aldehyde detoxification involves conjugation with glutathione (GSH) or carnosine (Car). Here, the detection and quantification of Car, GSH, GSSG (glutathione disulfide), and the corresponding adducts with HNE, Car-HNE, and GS-HNE, were performed in muscle and liver tissues of a hSOD1G93A ALS rat model by reverse-phase high-performance liquid chromatography coupled to electrospray ion trap tandem mass spectrometry in the selected reaction monitoring mode. A significant increase in the levels of GS-HNE and Car-HNE was observed in the muscle tissue of the end-stage ALS animals. Therefore, analyzing variations in the levels of these adducts in ALS animal tissue is crucial from a toxicological perspective and can contribute to the development of new therapeutic strategies.


Subject(s)
Aldehydes , Amyotrophic Lateral Sclerosis , Carnosine , Disease Models, Animal , Glutathione , Animals , Amyotrophic Lateral Sclerosis/metabolism , Aldehydes/metabolism , Aldehydes/chemistry , Carnosine/metabolism , Glutathione/metabolism , Rats , Muscle, Skeletal/metabolism , Humans , Superoxide Dismutase/metabolism , Male , Chromatography, High Pressure Liquid , Rats, Transgenic , Superoxide Dismutase-1/metabolism , Rats, Sprague-Dawley
2.
J Lipid Res ; 64(6): 100381, 2023 06.
Article in English | MEDLINE | ID: mdl-37100172

ABSTRACT

Patients with chronic kidney disease (CKD) are at high risk for CVD. However, traditional CVD risk factors cannot completely explain the increased risk. Altered HDL proteome is linked with incident CVD in CKD patients, but it is unclear whether other HDL metrics are associated with incident CVD in this population. In the current study, we analyzed samples from two independent prospective case-control cohorts of CKD patients, the Clinical Phenotyping and Resource Biobank Core (CPROBE) and the Chronic Renal Insufficiency Cohort (CRIC). We measured HDL particle sizes and concentrations (HDL-P) by calibrated ion mobility analysis and HDL cholesterol efflux capacity (CEC) by cAMP-stimulated J774 macrophages in 92 subjects from the CPROBE cohort (46 CVD and 46 controls) and in 91 subjects from the CRIC cohort (34 CVD and 57 controls). We tested associations of HDL metrics with incident CVD using logistic regression analysis. No significant associations were found for HDL-C or HDL-CEC in either cohort. Total HDL-P was only negatively associated with incident CVD in the CRIC cohort in unadjusted analysis. Among the six sized HDL subspecies, only medium-sized HDL-P was significantly and negatively associated with incident CVD in both cohorts after adjusting for clinical confounders and lipid risk factors with odds ratios (per 1-SD) of 0.45 (0.22-0.93, P = 0.032) and 0.42 (0.20-0.87, P = 0.019) for CPROBE and CRIC cohorts, respectively. Our observations indicate that medium-sized HDL-P-but not other-sized HDL-P or total HDL-P, HDL-C, or HDL-CEC-may be a prognostic cardiovascular risk marker in CKD.


Subject(s)
Cardiovascular Diseases , Renal Insufficiency, Chronic , Humans , Renal Insufficiency, Chronic/complications , Cholesterol, HDL , Risk Factors , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/etiology
3.
Circ Res ; 127(9): 1198-1210, 2020 10 09.
Article in English | MEDLINE | ID: mdl-32819213

ABSTRACT

RATIONALE: HDL (high-density lipoprotein) may be cardioprotective because it accepts cholesterol from macrophages via the cholesterol transport proteins ABCA1 (ATP-binding cassette transporter A1) and ABCG1 (ATP-binding cassette transporter G1). The ABCA1-specific cellular cholesterol efflux capacity (ABCA1 CEC) of HDL strongly and negatively associates with cardiovascular disease risk, but how diabetes mellitus impacts that step is unclear. OBJECTIVE: To test the hypothesis that HDL's cholesterol efflux capacity is impaired in subjects with type 2 diabetes mellitus. METHODS AND RESULTS: We performed a case-control study with 19 subjects with type 2 diabetes mellitus and 20 control subjects. Three sizes of HDL particles, small HDL, medium HDL, and large HDL, were isolated by high-resolution size exclusion chromatography from study subjects. Then we assessed the ABCA1 CEC of equimolar concentrations of particles. Small HDL accounted for almost all of ABCA1 CEC activity of HDL. ABCA1 CEC-but not ABCG1 CEC-of small HDL was lower in the subjects with type 2 diabetes mellitus than the control subjects. Isotope dilution tandem mass spectrometry demonstrated that the concentration of SERPINA1 (serpin family A member 1) in small HDL was also lower in subjects with diabetes mellitus. Enriching small HDL with SERPINA1 enhanced ABCA1 CEC. Structural analysis of SERPINA1 identified 3 amphipathic α-helices clustered in the N-terminal domain of the protein; biochemical analyses demonstrated that SERPINA1 binds phospholipid vesicles. CONCLUSIONS: The ABCA1 CEC of small HDL is selectively impaired in type 2 diabetes mellitus, likely because of lower levels of SERPINA1. SERPINA1 contains a cluster of amphipathic α-helices that enable apolipoproteins to bind phospholipid and promote ABCA1 activity. Thus, impaired ABCA1 activity of small HDL particles deficient in SERPINA1 could increase cardiovascular disease risk in subjects with diabetes mellitus.


Subject(s)
ATP Binding Cassette Transporter 1/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 1/metabolism , Cardiovascular Diseases/etiology , Cholesterol/metabolism , Diabetes Mellitus, Type 2/metabolism , Lipoproteins, HDL/metabolism , alpha 1-Antitrypsin/metabolism , Apolipoprotein C-II/analysis , Apolipoproteins/metabolism , Case-Control Studies , Diabetes Mellitus, Type 2/blood , Female , Humans , Macrophages/metabolism , Male , Middle Aged , Phospholipids/metabolism , Protein Structure, Tertiary , Risk , Triglycerides/analysis , alpha 1-Antitrypsin/chemistry
4.
Arterioscler Thromb Vasc Biol ; 41(8): 2330-2341, 2021 08.
Article in English | MEDLINE | ID: mdl-34134520

ABSTRACT

OBJECTIVE: Niacin therapy fails to reduce cardiovascular events in statin-treated subjects even though it increases plasma HDL-C (HDL [high-density lipoprotein] cholesterol) and decreases LDL-C (LDL [low-density lipoprotein] cholesterol) and triglyceride levels. To investigate potential mechanisms for this lack of cardioprotection, we quantified the HDL proteome of subjects in 2 niacin clinical trials: the CPC study (Carotid Plaque Composition) and the HDL Proteomics substudy of the AIM-HIGH trial (Atherothrombosis Intervention in Metabolic Syndrome with Low HDL/High Triglycerides). APPROACH AND RESULTS: Using targeted proteomics, we quantified levels of 31 HDL proteins from 124 CPC subjects and 120 AIM-HIGH subjects. The samples were obtained at baseline and after 1 year of statin monotherapy or niacin-statin combination therapy. Compared with statin monotherapy, niacin-statin combination therapy did not reduce HDL-associated apolipoproteins APOC1, APOC2, APOC3, and APOC4, despite significantly lowering triglycerides. In contrast, niacin markedly elevated HDL-associated PLTP (phospholipid transfer protein), CLU (clusterin), and HP/HPR (haptoglobin/haptoglobinrelated proteins; P≤0.0001 for each) in both the CPC and AIM-HIGH cohorts. CONCLUSIONS: The addition of niacin to statin therapy resulted in elevated levels of multiple HDL proteins linked to increased atherosclerotic risk, which might have compromised the cardioprotective effects associated with higher HDL-C levels and lower levels of LDL-C and triglycerides. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT00715273; NCT00880178; NCT00120289.


Subject(s)
Atherosclerosis/drug therapy , Cardiotonic Agents/therapeutic use , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Lipoproteins, HDL/chemistry , Niacin/therapeutic use , Adult , Atherosclerosis/blood , Cardiotonic Agents/pharmacology , Cardiovascular Diseases/blood , Cardiovascular Diseases/prevention & control , Female , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Lipoproteins, HDL/blood , Male , Middle Aged , Niacin/pharmacology , Proteomics
5.
Chem Rev ; 119(3): 2043-2086, 2019 02 13.
Article in English | MEDLINE | ID: mdl-30721030

ABSTRACT

Singlet oxygen (1O2) is a biologically relevant reactive oxygen species capable of efficiently reacting with cellular constituents. The resulting oxidatively generated damage to nucleic acids, membrane unsaturated lipids, and protein components has been shown to be implicated in several diseases, including arthritis, cataracts, and skin cancer. Singlet oxygen may be endogenously produced, among various possibilities, by myeloperoxidase, an enzyme implicated in inflammation processes, and also efficiently in skin by the UVA component of solar radiation through photosensitization reactions. Emphasis is placed in this Review on the description of the main oxidation reactions initiated by 1O2 and the resulting modifications within key cellular targets, including guanine for nucleic acids, unsaturated lipids, and targeted amino acids. Most of these reactions give rise to peroxides and dioxetanes, whose formation has been rationalized in terms of [4+2] cycloaddition and 1,2-cycloaddition with dienes + olefins, respectively. The use of [18O]-labeled thermolabile endoperoxides as a source of [18O]-labeled 1O2 has been applied to study mechanistic aspects and preferential targets of 1O2 in biological systems. A relevant major topic deals with the search for the molecular signature of the 1O2 formation in targeted biomolecules within cells. It may be anticipated that [18O]-labeled 1O2 and labeled peroxides in association with sensitive mass spectrometric methods should constitute powerful tools for this purpose.


Subject(s)
Lipids/chemistry , Nucleic Acids/chemistry , Proteins/chemistry , Singlet Oxygen/chemistry , Animals , Humans , Lipid Metabolism , Nucleic Acids/metabolism , Proteins/metabolism , Singlet Oxygen/metabolism
6.
J Proteome Res ; 19(1): 248-259, 2020 01 03.
Article in English | MEDLINE | ID: mdl-31697504

ABSTRACT

High-density lipoprotein (HDL) is a diverse group of particles with multiple cardioprotective functions. HDL proteome follows HDL particle complexity. Many proteins were described in HDL, but consistent quantification of HDL protein cargo is still a challenge. To address this issue, the aim of this work was to compare data-independent acquisition (DIA) and parallel reaction monitoring (PRM) methodologies in their abilities to differentiate HDL subclasses through their proteomes. To this end, we first evaluated the analytical performances of DIA and PRM using labeled peptides in pooled digested HDL as a biological matrix. Next, we compared the quantification capabilities of the two methodologies for 24 proteins found in HDL2 and HDL3 from 19 apparently healthy subjects. DIA and PRM exhibited comparable linearity, accuracy, and precision. Moreover, both methodologies worked equally well, differentiating HDL subclasses' proteomes with high precision. Our findings may help to understand HDL functional diversity.


Subject(s)
Lipoproteins, HDL/blood , Proteomics/methods , Adult , Aged , Calibration , Chromatography, High Pressure Liquid/methods , Humans , Limit of Detection , Lipoproteins, HDL2/blood , Lipoproteins, HDL3/blood , Middle Aged , Proteomics/statistics & numerical data , Quality Control , Tandem Mass Spectrometry/methods , Workflow , Young Adult
7.
Photochem Photobiol Sci ; 19(11): 1590-1602, 2020 Nov 11.
Article in English | MEDLINE | ID: mdl-33107551

ABSTRACT

Studies have previously shown that anthracene and naphthalene derivatives serve as compounds for trapping and chemically generating singlet molecular oxygen [O2(1Δg)], respectively. Simple and efficient synthetic routes to anthracene and naphthalene derivatives are needed, for improved capture and release of O2(1Δg) in cellular environments. Because of this need, we have synthesized a dihydroxypropyl amide naphthlene endoperoxide as a O2(1Δg) donor, as well as five anthracene derivatives as O2(1Δg) acceptor. The anthracene derivatives bear dihydroxypropyl amide, ester, and sulfonate ion end groups connected to 9,10-positions by way of unsaturated (vinyl) and saturated (ethyl) bridging groups. Heck reactions were found to yield these six compounds in easy-to-carry out 3-step reactions in yields of 50-76%. Preliminary results point to the potential of the anthracene compounds to serve as O2(1Δg) acceptors and would be amenable for future use in biological systems to expand the understanding of O2(1Δg) in biochemistry.


Subject(s)
Anthracenes/pharmacology , Naphthalenes/pharmacology , Singlet Oxygen/metabolism , Anthracenes/chemical synthesis , Anthracenes/chemistry , Cell Line, Tumor , Humans , Microscopy, Fluorescence , Molecular Structure , Naphthalenes/chemical synthesis , Naphthalenes/chemistry , Optical Imaging , Singlet Oxygen/chemistry
8.
Lipids Health Dis ; 19(1): 205, 2020 Sep 14.
Article in English | MEDLINE | ID: mdl-32921312

ABSTRACT

BACKGROUND AND AIMS: Diabetic kidney disease (DKD) is associated with lipid derangements that worsen kidney function and enhance cardiovascular (CVD) risk. The management of dyslipidemia, hypertension and other traditional risk factors does not completely prevent CVD complications, bringing up the participation of nontraditional risk factors such as advanced glycation end products (AGEs), carbamoylation and changes in the HDL proteome and functionality. The HDL composition, proteome, chemical modification and functionality were analyzed in nondialysis subjects with DKD categorized according to the estimated glomerular filtration rate (eGFR) and urinary albumin excretion rate (AER). METHODS: Individuals with DKD were divided into eGFR> 60 mL/min/1.73 m2 plus AER stages A1 and A2 (n = 10) and eGFR< 60 plus A3 (n = 25) and matched by age with control subjects (eGFR> 60; n = 8). RESULTS: Targeted proteomic analyses quantified 28 proteins associated with HDL in all groups, although only 2 were more highly expressed in the eGFR< 60 + A3 group than in the controls: apolipoprotein D (apoD) and apoA-IV. HDL from the eGFR< 60 + A3 group presented higher levels of total AGEs (20%), pentosidine (6.3%) and carbamoylation (4.2 x) and a reduced ability to remove 14C-cholesterol from macrophages (33%) in comparison to HDL from controls. The antioxidant role of HDL (lag time for LDL oxidation) was similar among groups, but HDL from the eGFR< 60 + A3 group presented a greater ability to inhibit the secretion of IL-6 and TNF-alpha (95%) in LPS-elicited macrophages in comparison to the control group. CONCLUSION: The increase in apoD and apoA-IV could contribute to counteracting the HDL chemical modification by AGEs and carbamoylation, which contributes to HDL loss of function in well-established DKD.


Subject(s)
Apolipoproteins A/blood , Apolipoproteins D/blood , Diabetic Nephropathies/blood , Lipoproteins, HDL/blood , Proteome/metabolism , Aged , Aged, 80 and over , Albuminuria/blood , Albuminuria/genetics , Albuminuria/pathology , Apolipoproteins A/genetics , Apolipoproteins D/genetics , Arginine/analogs & derivatives , Arginine/blood , Arginine/genetics , Case-Control Studies , Diabetic Nephropathies/genetics , Diabetic Nephropathies/pathology , Female , Gene Expression , Glomerular Filtration Rate , Glycation End Products, Advanced/blood , Glycation End Products, Advanced/genetics , Humans , Interleukin-6/genetics , Interleukin-6/metabolism , Kidney/metabolism , Kidney/pathology , Lipopolysaccharides/pharmacology , Lipoproteins, HDL/genetics , Lysine/analogs & derivatives , Lysine/blood , Lysine/genetics , Macrophages/drug effects , Macrophages/metabolism , Macrophages/pathology , Male , Middle Aged , Primary Cell Culture , Protein Carbamylation , Proteome/classification , Proteome/genetics , Renal Dialysis , Risk Factors , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
9.
Chem Res Toxicol ; 31(5): 332-339, 2018 05 21.
Article in English | MEDLINE | ID: mdl-29707942

ABSTRACT

Air pollution is a major environmental risk for human health. Acetaldehyde is present in tobacco smoke and vehicle exhaust. In this study, we show that [13C2]-acetaldehyde induces DNA modification with the formation of isotopically labeled 1, N2-propano-2'-deoxyguanosine adducts in the brain and lungs of rats exposed to concentrations of acetaldehyde found in the atmosphere of megacities. The adduct, with the addition of two molecules of isotopically labeled acetaldehyde [13C4]-1, N2-propano-dGuo, was detected in the lung and brain tissues of exposed rats by micro-HPLC/MS/MS. Structural confirmation of the products was unequivocally performed by nano-LC/ESI+-HRMS3 analyses. DNA modifications induced by acetaldehyde have been regarded as a key factor in the mechanism of mutagenesis and may be involved in the cancer risks associated with air pollution.


Subject(s)
Acetaldehyde/toxicity , Brain/drug effects , Brain/metabolism , DNA Adducts/biosynthesis , Lung/drug effects , Lung/metabolism , Acetaldehyde/administration & dosage , Acetaldehyde/chemistry , Animals , Carbon Isotopes , DNA Adducts/chemistry , DNA Adducts/isolation & purification , Male , Molecular Structure , Rats , Rats, Wistar
10.
Circ Res ; 119(1): 83-90, 2016 06 24.
Article in English | MEDLINE | ID: mdl-27114438

ABSTRACT

RATIONALE: Coronary endothelial dysfunction (ED)-an early marker of atherosclerosis-increases the risk of cardiovascular events. OBJECTIVE: We tested the hypothesis that cholesterol efflux capacity and high-density lipoprotein (HDL) particle concentration predict coronary ED better than HDL-cholesterol (HDL-C). METHODS AND RESULTS: We studied 80 subjects with nonobstructive (<30% stenosis) coronary artery disease. ED was defined as <50% change in coronary blood flow in response to intracoronary infusions of acetylcholine during diagnostic coronary angiography. Cholesterol efflux capacity and HDL particle concentration (HDL-PIMA) were assessed with validated assays. Cholesterol efflux capacity and HDL-PIMA were both strong, inverse predictors of ED (P<0.001 and 0.005, respectively). In contrast, HDL-C and other traditional lipid risk factors did not differ significantly between control and ED subjects. Large HDL particles were markedly decreased in ED subjects (33%; P=0.005). After correction for HDL-C, both efflux capacity and HDL-PIMA remained significant predictors of ED status. HDL-PIMA explained cholesterol efflux capacity more effectively than HDL-C (r=0.54 and 0.36, respectively). The efflux capacities of isolated HDL and serum HDL correlated strongly (r=0.49). CONCLUSIONS: Cholesterol efflux capacity and HDL-PIMA are reduced in subjects with coronary ED, independently of HDL-C. Alterations in HDL-PIMA and HDL itself account for a much larger fraction of the variation in cholesterol efflux capacity than does HDL-C. A selective decrease in large HDL particles may contribute to impaired cholesterol efflux capacity in ED subjects. These observations support a role for HDL size, concentration, and function as markers-and perhaps mediators-of coronary atherosclerosis in humans.


Subject(s)
Cholesterol, HDL/metabolism , Coronary Artery Disease/blood , Endothelium, Vascular/metabolism , Aged , Biomarkers/blood , Case-Control Studies , Cholesterol, HDL/blood , Coronary Artery Disease/metabolism , Coronary Artery Disease/pathology , Coronary Vessels/metabolism , Coronary Vessels/pathology , Endothelium, Vascular/pathology , Female , Humans , Male , Middle Aged
11.
Mol Cell Proteomics ; 15(3): 1083-93, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26667175

ABSTRACT

Low levels of high-density lipoprotein cholesterol (HDL-C) and high triglyceride levels contribute to the excess rate of cardiovascular events seen in subjects with type 2 diabetes. Fenofibrate treatment partially reverses dyslipidemia in these subjects. However, a paradoxical marked reduction in HDL-C and HDL's major protein, apolipoprotein A-I, is a complication of fenofibrate in combination with rosiglitazone, an insulin-sensitizing agent. Risk factors for this condition, termed hypoalphalipoproteinemia, have yet to be identified. Using a case-control study design with subjects enrolled in the Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial, we tested the hypothesis that alterations in HDL's protein cargo predispose diabetic subjects to fenofibrate/rosiglitazone-induced hypoalphalipoproteinemia. HDL was isolated from blood obtained from controls (no decreases or increase in HDL-C while receiving fenofibrate/rosiglitazone therapy) and cases (developed hypoalphalipoproteinemia after fenofibrate/rosiglitazone treatment) participating in the ACCORD study before they began fenofibrate/rosiglitazone treatment. HDL proteins were quantified by targeted parallel reaction monitoring (PRM) and selected reaction monitoring (SRM) with isotope dilution. This approach demonstrated marked increases in the relative concentrations of paraoxonase/arylesterase 1 (PON1), apolipoprotein C-II (APOC2), apolipoprotein C-I, and apolipoprotein H in the HDL of subjects who developed hypoalphalipoproteinemia. The case and control subjects did not differ significantly in baseline HDL-C levels or other traditional lipid risk factors. We used orthogonal biochemical techniques to confirm increased levels of PON1 and APOC2. Our observations suggest that an imbalance in HDL proteins predisposes diabetic subjects to develop hypoalphalipoproteinemia on fenofibrate/rosiglitazone therapy.


Subject(s)
Apolipoprotein C-II/metabolism , Aryldialkylphosphatase/metabolism , Cardiovascular Diseases/prevention & control , Diabetes Mellitus, Type 2/drug therapy , Drug Therapy, Combination/adverse effects , Hypoalphalipoproteinemias/chemically induced , Proteomics/methods , Aged , Cardiovascular Diseases/blood , Case-Control Studies , Diabetes Mellitus, Type 2/metabolism , Female , Fenofibrate/administration & dosage , Fenofibrate/adverse effects , Humans , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/adverse effects , Hypolipidemic Agents/administration & dosage , Hypolipidemic Agents/adverse effects , Lipoproteins, HDL/blood , Male , Middle Aged , Risk Factors , Rosiglitazone , Thiazolidinediones/administration & dosage , Thiazolidinediones/adverse effects
12.
Curr Opin Lipidol ; 28(1): 52-59, 2017 02.
Article in English | MEDLINE | ID: mdl-27906712

ABSTRACT

PURPOSE OF REVIEW: The ability of HDL to promote cholesterol efflux from macrophages is a predictor of cardiovascular risk independent of HDL cholesterol levels. However, the molecular determinants of HDL cholesterol efflux capacity (CEC) are largely unknown. RECENT FINDINGS: The term HDL defines a heterogeneous population of particles with distinct size, shape, protein, and lipid composition. Cholesterol efflux is mediated by multiple pathways that may be differentially modulated by HDL composition. Furthermore, different subpopulations of HDL particles mediate CEC via specific pathways, but the molecular determinants of CEC, either proteins or lipids, are unclear. Inflammation promotes a profound remodeling of HDL and impairs overall HDL CEC while improving ATP-binding cassette transporter G1-mediated efflux. This review discusses recent findings that connect HDL composition and CEC. SUMMARY: Data from recent animal and human studies clearly show that multiple factors associate with CEC including individual proteins, lipid composition, as well as specific particle subpopulations. Although acute inflammation remodels HDL and impairs CEC, chronic inflammation has more subtle effects. Standardization of assays measuring HDL composition and CEC is a necessary prerequisite for understanding the factors controlling HDL CEC. Unraveling these factors may help the development of new therapeutic interventions improving HDL function.


Subject(s)
Cholesterol, HDL/metabolism , Inflammation/metabolism , Animals , Biological Transport , Humans
13.
Curr Opin Lipidol ; 28(5): 414-418, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28777110

ABSTRACT

PURPOSE OF REVIEW: Epidemiological and clinical studies link low levels of HDL cholesterol (HDL-C) with increased risk of atherosclerotic cardiovascular disease (CVD). However, genetic polymorphisms linked to HDL-C do not associate consistently with CVD risk, and randomized clinical studies of drugs that elevate HDL-C via different mechanisms failed to reduce CVD risk in statin-treated patients with established CVD. New metrics that capture HDL's proposed cardioprotective effects are therefore urgently needed. RECENT FINDINGS: Recent studies demonstrate cholesterol efflux capacity (CEC) of serum HDL (serum depleted of cholesterol-rich atherogenic lipoproteins) is an independent and better predictor of incident and prevalent CVD risk than HDL-C. However, it remains unclear whether therapies that increase CEC are cardioprotective. Other key issues are the impact of HDL-targeted therapies on HDL particle size and concentration and the relationship of those changes to CEC and cardioprotection. SUMMARY: It is time to end the clinical focus on HDL-C and to understand how HDL's function, protein composition and size contribute to CVD risk. It will also be important to link variations in function and size to HDL-targeted therapies. Developing new metrics for quantifying HDL function, based on better understanding HDL metabolism and macrophage CEC, is critical for achieving these goals.


Subject(s)
Cholesterol, HDL/metabolism , Animals , Biomarkers/metabolism , Humans
14.
Arterioscler Thromb Vasc Biol ; 36(2): 404-11, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26681752

ABSTRACT

OBJECTIVE: We investigated relationships between statin and niacin/statin combination therapy and the concentration of high-density lipoprotein particles (HDL-P) and cholesterol efflux capacity, 2 HDL metrics that might better assess cardiovascular disease risk than HDL-cholesterol (HDL-C) levels. APPROACH: In the Carotid Plaque Composition Study, 126 subjects with a history of cardiovascular disease were randomized to atorvastatin or combination therapy (atorvastatin/niacin). At baseline and after 1 year of treatment, the concentration of HDL and its 3 subclasses (small, medium, and large) were quantified by calibrated ion mobility analysis (HDL-PIMA). We also measured total cholesterol efflux from macrophages and ATP-binding cassette transporter A1 (ABCA1)-specific cholesterol efflux capacity. RESULTS: Atorvastatin decreased low-density lipoprotein cholesterol by 39% and raised HDL-C by 11% (P=0.0001) but did not increase HDL-PIMA or macrophage cholesterol efflux. Combination therapy raised HDL-C by 39% (P<0.0001) but increased HDL-PIMA by only 14%. Triglyceride levels did not correlate with HDL-PIMA (P=0.39), in contrast to their strongly negative correlation with HDL-C (P<0.0001). Combination therapy increased macrophage cholesterol efflux capacity (16%, P<0.0001) but not ABCA1-specific efflux. ABCA1-specific cholesterol efflux capacity decreased significantly (P=0.013) in statin-treated subjects, with or without niacin therapy. CONCLUSIONS: Statin therapy increased HDL-C levels but failed to increase HDL-PIMA. It also reduced ABCA1-specific cholesterol efflux capacity. Adding niacin to statin therapy increased HDL-C and macrophage efflux, but had much less effect on HDL-PIMA. It also failed to improve ABCA1-specific efflux, a key cholesterol exporter in macrophages. Our observations raise the possibility that niacin might not target the relevant atheroprotective population of HDL.


Subject(s)
ATP Binding Cassette Transporter 1/metabolism , Atorvastatin/therapeutic use , Carotid Artery Diseases/drug therapy , Cholesterol, HDL/blood , Cholesterol/blood , Dyslipidemias/drug therapy , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Macrophages/drug effects , Niacin/therapeutic use , ATP Binding Cassette Transporter 1/genetics , Animals , Biological Transport , Carotid Artery Diseases/blood , Carotid Artery Diseases/diagnosis , Cell Line , Cricetinae , Drug Combinations , Dyslipidemias/blood , Dyslipidemias/diagnosis , Female , Humans , Macrophages/metabolism , Male , Mice , Middle Aged , Time Factors , Transfection , Treatment Outcome
15.
J Biol Chem ; 290(23): 14656-67, 2015 Jun 05.
Article in English | MEDLINE | ID: mdl-25931125

ABSTRACT

The physiological roles of macrophages and dendritic cells (DCs) in lean white adipose tissue homeostasis have received little attention. Because DCs are generated from bone marrow progenitors in the presence of granulocyte/macrophage colony-stimulating factor (GM-CSF), we used GM-CSF-deficient (Csf2(-/-)) mice fed a low fat diet to test the hypothesis that adipose tissue DCs regulate the development of adipose tissue. At 4 weeks of age, Csf2(-/-) mice had 75% fewer CD45(+)Cd11b(+)Cd11c(+)MHCII(+) F4/80(-) DCs in white adipose tissue than did wild-type controls. Furthermore, the Csf2(-/-) mice showed a 30% increase in whole body adiposity, which persisted to adulthood. Adipocytes from Csf2(-/-) mice were 50% larger by volume and contained higher levels of adipogenesis gene transcripts, indicating enhanced adipocyte differentiation. In contrast, adipogenesis/adipocyte lipid accumulation was inhibited when preadipocytes were co-cultured with CD45(+)Cd11b(+)Cd11c(+)MHCII(+)F4/80(-) DCs. Medium conditioned by DCs, but not by macrophages, also inhibited adipocyte lipid accumulation. Proteomic analysis revealed that matrix metalloproteinase 12 and fibronectin 1 were greatly enriched in the medium conditioned by DCs compared with that conditioned by macrophages. Silencing fibronectin or genetic deletion of matrix metalloproteinase 12 in DCs partially reversed the inhibition of adipocyte lipid accumulation. Our observations indicate that DCs residing in adipose tissue play a critical role in suppressing normal adipose tissue expansion.


Subject(s)
Adipogenesis , Adipose Tissue/cytology , Dendritic Cells/metabolism , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , 3T3-L1 Cells , Adipose Tissue/metabolism , Aging , Animals , Dendritic Cells/cytology , Energy Metabolism , Female , Gene Deletion , Glucose/metabolism , Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Homeostasis , Male , Matrix Metalloproteinase 12/metabolism , Mice , Mice, Inbred C57BL , Myeloid Cells/cytology , Myeloid Cells/metabolism
16.
Arch Biochem Biophys ; 595: 161-75, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-27095234

ABSTRACT

Inspired by Helmut Sies we continue the development of suitable chemical generators of (1)O2 based on the thermodissociation of naphthalene endoperoxide derivatives. The present manuscript focuses on how the use of [(18)O]-labeled endoperoxides and hydroperoxides can be applied to study mechanistic aspects related to the generation of singlet molecular oxygen and its reactions in biological systems. The peroxidation reactions of the main cellular targets including unsaturated lipids, proteins and nucleic acids have received major attention during the last three decades. Emphasis is placed in this manuscript on the description of the synthesis and the main use of [(18)O]-labeled compounds, and especially of peroxides and (1)O2, for tracer elucidation of reaction mechanisms.


Subject(s)
Peroxides/chemistry , Singlet Oxygen , Brazil
17.
Clin Chem ; 60(11): 1393-401, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25225166

ABSTRACT

BACKGROUND: It is critical to develop new metrics to determine whether HDL is cardioprotective in humans. One promising approach is HDL particle concentration (HDL-P), the size and concentration of HDL in plasma. However, the 2 methods currently used to determine HDL-P yield concentrations that differ >5-fold. We therefore developed and validated an improved approach to quantify HDL-P, termed calibrated ion mobility analysis (calibrated IMA). METHODS: HDL was isolated from plasma by ultracentrifugation, introduced into the gas phase with electrospray ionization, separated by size, and quantified by particle counting. We used a calibration curve constructed with purified proteins to correct for the ionization efficiency of HDL particles. RESULTS: The concentrations of gold nanoparticles and reconstituted HDLs measured by calibrated IMA were indistinguishable from concentrations determined by orthogonal methods. In plasma of control (n = 40) and cerebrovascular disease (n = 40) participants, 3 subspecies of HDL were reproducibility measured, with an estimated total HDL-P of 13.4 (2.4) µmol/L. HDL-C accounted for 48% of the variance in HDL-P. HDL-P was significantly lower in participants with cerebrovascular disease (P = 0.002), and this difference remained significant after adjustment for HDL cholesterol concentrations (P = 0.02). CONCLUSIONS: Calibrated IMA accurately determined the concentration of gold nanoparticles and synthetic HDL, strongly suggesting that the method could accurately quantify HDL particle concentration. The estimated stoichiometry of apolipoprotein A-I determined by calibrated IMA was 3-4 per HDL particle, in agreement with current structural models. Furthermore, HDL-P was associated with cardiovascular disease status in a clinical population independently of HDL cholesterol.


Subject(s)
Apolipoprotein A-I/blood , Cholesterol, HDL/blood , Lipoproteins, HDL/blood , Age Factors , Apolipoprotein A-I/isolation & purification , Cerebrovascular Disorders/blood , Cholesterol, HDL/isolation & purification , Female , Gold/chemistry , Humans , Ions/chemistry , Lipoproteins, HDL/isolation & purification , Male , Metal Nanoparticles/chemistry , Particle Size , Reproducibility of Results , Sex Factors , Ultracentrifugation
18.
J Med Chem ; 67(14): 12012-12032, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38991154

ABSTRACT

This study presents a new approach for identifying myeloperoxidase (MPO) inhibitors with strong in vivo efficacy. By combining inhibitor-like rules and structure-based virtual screening, the pipeline achieved a 70% success rate in discovering diverse, nanomolar-potency reversible inhibitors and hypochlorous acid (HOCl) scavengers. Mechanistic analysis identified RL6 as a genuine MPO inhibitor and RL7 as a potent HOCl scavenger. Both compounds effectively suppressed HOCl production in cells and neutrophils, with RL6 showing a superior inhibition of neutrophil extracellular trap release (NETosis). In a gout arthritis mouse model, intraperitoneal RL6 administration reduced edema, peroxidase activity, and IL-1ß levels. RL6 also exhibited oral bioavailability, significantly reducing paw edema when administered orally. This study highlights the efficacy of integrating diverse screening methods to enhance virtual screening success, validating the anti-inflammatory potential of potent inhibitors, and advancing the MPO inhibitor research.


Subject(s)
Arthritis, Gouty , Peroxidase , Animals , Peroxidase/antagonists & inhibitors , Peroxidase/metabolism , Arthritis, Gouty/drug therapy , Mice , Humans , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/therapeutic use , Male , Hypochlorous Acid , Neutrophils/drug effects , Neutrophils/metabolism , Structure-Activity Relationship , Drug Evaluation, Preclinical
19.
iScience ; 26(10): 107824, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37736053

ABSTRACT

The clinical presentation of COVID-19 is highly variable, and understanding the underlying biological processes is crucial. This study utilized a proteomic analysis to investigate dysregulated processes in the peripheral blood mononuclear cells of patients with COVID-19 compared to healthy volunteers. Samples were collected at different stages of the disease, including hospital admission, after 7 days of hospitalization, and 30 days after discharge. Metabolic pathway alterations and increased abundance of neutrophil-related proteins were observed in patients. Patients progressing to critical illness had significantly low-abundance proteins in the pentose phosphate and glycolysis pathways compared with those presenting clinical recovery. Important biological processes, such as fatty acid concentration and glucose metabolism disorder, remained altered even after 30 days of hospital discharge. Temporal proteomic changes revealed distinct pathways in critically ill and non-critically ill patients. Our study emphasizes the significance of longitudinal cellular proteomic studies in identifying disease progression-related pathways and persistent protein changes post-hospitalization.

20.
Diabetol Metab Syndr ; 15(1): 42, 2023 Mar 11.
Article in English | MEDLINE | ID: mdl-36899434

ABSTRACT

BACKGROUND: Subclinical atherosclerosis is frequently observed in type 1 diabetes (T1D) although the mechanisms and markers involved in the evolution to established cardiovascular disease are not well known. High-density lipoprotein cholesterol in T1D is normal or even high, and changes in its functionality and proteomics are considered. Our aim was to evaluate the proteomics of HDL subfractions in T1D and control subjects and its association with clinical variables, subclinical atherosclerosis markers and HDL functionality. METHODS: A total of 50 individuals with T1D and 30 matched controls were included. Carotid-femoral pulse wave velocity (PWV), flow-mediated vasodilation (FMD), cardiovascular autonomic neuropathy (CAN), and ten-year cardiovascular risk (ASCVDR) were determined. Proteomics (parallel reaction monitoring) was determined in isolated HDL2 and HDL3 that were also utilized to measure cholesterol efflux from macrophages. RESULTS: Among 45 quantified proteins, 13 in HDL2 and 33 in HDL3 were differentially expressed in T1D and control subjects. Six proteins related to lipid metabolism, one to inflammatory acute phase, one to complement system and one to antioxidant response were more abundant in HDL2, while 14 lipid metabolism, three acute-phase, three antioxidants and one transport in HDL3 of T1D subjects. Three proteins (lipid metabolism, transport, and unknown function) were more abundant in HDL2; and ten (lipid metabolism, transport, protease inhibition), more abundant in HDL3 of controls. Individuals with T1D had higher PWV and ten-year ASCVDR, and lower FMD, Cholesterol efflux from macrophages was similar between T1D and controls. Proteins in HDL2 and HDL3, especially related to lipid metabolism, correlated with PWV, CAN, cholesterol efflux, HDLc, hypertension, glycemic control, ten-year ASCVDR, and statins use. CONCLUSION: HDL proteomics can be predictive of subclinical atherosclerosis in type 1 diabetes. Proteins that are not involved in reverse cholesterol transport may be associated with the protective role of HDL.

SELECTION OF CITATIONS
SEARCH DETAIL