ABSTRACT
The COVID-19 pandemic has created an urgent need for models that can project epidemic trends, explore intervention scenarios, and estimate resource needs. Here we describe the methodology of Covasim (COVID-19 Agent-based Simulator), an open-source model developed to help address these questions. Covasim includes country-specific demographic information on age structure and population size; realistic transmission networks in different social layers, including households, schools, workplaces, long-term care facilities, and communities; age-specific disease outcomes; and intrahost viral dynamics, including viral-load-based transmissibility. Covasim also supports an extensive set of interventions, including non-pharmaceutical interventions, such as physical distancing and protective equipment; pharmaceutical interventions, including vaccination; and testing interventions, such as symptomatic and asymptomatic testing, isolation, contact tracing, and quarantine. These interventions can incorporate the effects of delays, loss-to-follow-up, micro-targeting, and other factors. Implemented in pure Python, Covasim has been designed with equal emphasis on performance, ease of use, and flexibility: realistic and highly customized scenarios can be run on a standard laptop in under a minute. In collaboration with local health agencies and policymakers, Covasim has already been applied to examine epidemic dynamics and inform policy decisions in more than a dozen countries in Africa, Asia-Pacific, Europe, and North America.
Subject(s)
COVID-19 , Models, Biological , SARS-CoV-2 , Systems Analysis , Basic Reproduction Number , COVID-19/etiology , COVID-19/prevention & control , COVID-19/transmission , COVID-19 Testing , COVID-19 Vaccines , Computational Biology , Computer Simulation , Contact Tracing , Disease Progression , Hand Disinfection , Host Microbial Interactions , Humans , Masks , Mathematical Concepts , Pandemics , Physical Distancing , Quarantine , SoftwareABSTRACT
Measles threatens the lives and livelihoods of tens of millions of children and there are countries where routine immunization systems miss enough individuals to create the risk of large outbreaks. To help address this threat, measles supplementary immunization activities are time-limited, coordinated campaigns to immunize en masse a target population. Timing campaigns to be concurrent with building outbreak risk is an important consideration, but current programmatic standards focus on campaigns achieving a high coverage of at least 95%. We show that there is a dramatic trade-off between campaign timeliness and coverage. Optimal timing at coverages as low as 50% for areas with weak routine immunization systems is shown to outperform the current standard, which is delayed by as little as 6 months. Measured coverage alone is revealed as a potentially misleading performance metric.
ABSTRACT
Initial COVID-19 containment in the United States focused on limiting mobility, including school and workplace closures. However, these interventions have had enormous societal and economic costs. Here, we demonstrate the feasibility of an alternative control strategy, test-trace-quarantine: routine testing of primarily symptomatic individuals, tracing and testing their known contacts, and placing their contacts in quarantine. We perform this analysis using Covasim, an open-source agent-based model, which has been calibrated to detailed demographic, mobility, and epidemiological data for the Seattle region from January through June 2020. With current levels of mask use and schools remaining closed, we find that high but achievable levels of testing and tracing are sufficient to maintain epidemic control even under a return to full workplace and community mobility and with low vaccine coverage. The easing of mobility restrictions in June 2020 and subsequent scale-up of testing and tracing programs through September provided real-world validation of our predictions. Although we show that test-trace-quarantine can control the epidemic in both theory and practice, its success is contingent on high testing and tracing rates, high quarantine compliance, relatively short testing and tracing delays, and moderate to high mask use. Thus, in order for test-trace-quarantine to control transmission with a return to high mobility, strong performance in all aspects of the program is required.
Subject(s)
COVID-19/prevention & control , COVID-19/transmission , Contact Tracing/methods , Quarantine/methods , Humans , SARS-CoV-2/isolation & purification , United StatesABSTRACT
BACKGROUND: Recently, artificial intelligence-powered devices have been put forward as potentially powerful tools for the improvement of mental healthcare. An important question is how these devices impact the physician-patient interaction. AIMS: Aifred is an artificial intelligence-powered clinical decision support system (CDSS) for the treatment of major depression. Here, we explore the use of a simulation centre environment in evaluating the usability of Aifred, particularly its impact on the physician-patient interaction. METHOD: Twenty psychiatry and family medicine attending staff and residents were recruited to complete a 2.5-h study at a clinical interaction simulation centre with standardised patients. Each physician had the option of using the CDSS to inform their treatment choice in three 10-min clinical scenarios with standardised patients portraying mild, moderate and severe episodes of major depression. Feasibility and acceptability data were collected through self-report questionnaires, scenario observations, interviews and standardised patient feedback. RESULTS: All 20 participants completed the study. Initial results indicate that the tool was acceptable to clinicians and feasible for use during clinical encounters. Clinicians indicated a willingness to use the tool in real clinical practice, a significant degree of trust in the system's predictions to assist with treatment selection, and reported that the tool helped increase patient understanding of and trust in treatment. The simulation environment allowed for the evaluation of the tool's impact on the physician-patient interaction. CONCLUSIONS: The simulation centre allowed for direct observations of clinician use and impact of the tool on the clinician-patient interaction before clinical studies. It may therefore offer a useful and important environment in the early testing of new technological tools. The present results will inform further tool development and clinician training materials.
ABSTRACT
Near a black hole, differential rotation of a magnetized accretion disk is thought to produce an instability that amplifies weak magnetic fields, driving accretion and outflow. These magnetic fields would naturally give rise to the observed synchrotron emission in galaxy cores and to the formation of relativistic jets, but no observations to date have been able to resolve the expected horizon-scale magnetic-field structure. We report interferometric observations at 1.3-millimeter wavelength that spatially resolve the linearly polarized emission from the Galactic Center supermassive black hole, Sagittarius A*. We have found evidence for partially ordered magnetic fields near the event horizon, on scales of ~6 Schwarzschild radii, and we have detected and localized the intrahour variability associated with these fields.