Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
1.
J Am Chem Soc ; 146(28): 19386-19396, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38953864

ABSTRACT

Compared with the ripple of visible EuIII-based emission intensity induced by appended [FeIIN6] spin crossover (SCO) units, as detected in the triple-stranded [EuFe(L1)3]5+ helicate, the lanthanide-based luminescent detection of FeII spin-state equilibria could be improved significantly if the luminophore emission is shifted toward the near-infrared (NIR) domain. Replacing EuIII with NdIII in [NdFe(L1)3]5+ (i) maintains the favorable SCO properties in acetonitrile [critical temperature T1/2 = 322(2) K], (ii) saturates nonradiative vibrational relaxation processes in the 233-333 K range, and (iii) boosts the crucial intramolecular NdIII → FeII energy transfer rate processes, which are sensitive to the spin state of the FeII metallic center. Consequently, the steady-state NIR Nd(4F3/2 → 4IJ) emission of the luminophore is amplified and linearly correlated with the low-spin-[FeIIN6] and high-spin-[FeIIN6] mole fractions controlled by the SCO equilibrium. This paves the way for a straightforward and direct NIR luminescent reading/sensing of the FeII spin state in single molecules.

2.
Inorg Chem ; 63(8): 3617-3629, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38206181

ABSTRACT

The interest in Cr(III) complexes has been renewed over the past decades for building practical guidelines in the design of efficient earth-abundant phosphorescent near-infrared emitters. In that context, we report the first family of homoleptic tri(didentate) Cr(III) complexes [CrL3]3+ based on polyaromatic ligands inducing 6-membered chelate rings, namely, the bis(1-methylimidazol-2-yl)ketone (L = bik), bis(1-methylimidazol-2-yl)methane (L = bim), and bis(1-methylimidazol-2-yl)ethane (L = bie) ligands. The programmed close-to-perfect octahedral microsymmetry of {CrIIIN6} chromophores found in [Cr(bik)3](OTf)3 (1), [Cr(bim)3](OTf)3 (2), and [Cr(bie)3](BF4)3 (3) ensures a ligand-field strength large enough to induce intense and long-lived Cr-based phosphorescence. Impressive excited-state lifetimes (5.0-8.2 ms) were obtained at low temperatures for the [Cr(L)3]3+ series. Additionally, the photoluminescent quantum yield climbs to 0.8% for compound 1 in deaerated solutions. Moreover, the photophysical features of the three homoleptic complexes are barely influenced by the presence of dioxygen presumably because of the poor overlap between the Cr-based phosphorescence spectra (ca. 14100 cm-1) and the 1Σg+ ← 3Σg- transition in the absorption spectrum of dioxygen (13100 cm-1). The multiredox electrochemical pattern of 1 is evidenced by cyclic voltammetry as well as its strong photooxidant behavior. The pH sensitivity of 2 and 3 luminescence is discussed, along with the reactivity of their ß-diketiminate derivatives.

3.
Angew Chem Int Ed Engl ; 63(1): e202316649, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-37988181

ABSTRACT

Atomically precise Au nanoclusters (NCs) with discrete energy levels can be used as photosensitizers for CO2 reduction. However, tight ligand capping of Au NCs hinders CO2 adsorption on its active sites. Here, a new hybrid material is obtained by anchoring of thiol functionalized terpyridine metal complexes (metal=Ru, Ni, Fe, Co) on Au NCs by ligand exchange reactions (LERs). The anchoring of Ru and Ni complexes on Au25 NC (Au25 -Ru and Au25 -Ni) leads to adequate CO2 to CO conversion for photocoupled electrocatalytic CO2 reduction (PECR) in terms of high selectivity, with Faradaic efficiency of CO (FECO ) exceeding 90 % in a wide potential range, remarkable activity (CO production rate up to two times higher than that for pristine Au25 PET18 ) and extremely large turnover frequencies (TOFs, 63012 h-1 at -0.97 V for Au25 -Ru and 69989 h-1 at -1.07 V vs. RHE for Au25 -Ni). Moreover, PECR stability test indicates the excellent long-term stability of the modified NCs in contrast with pristine Au NCs. The present approach offers a novel strategy to enhance PECR activity and selectivity, as well as to improve the stability of Au NCs under light illumination, which paves the way for highly active and stable Au NCs catalysts.

4.
J Am Chem Soc ; 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-37018515

ABSTRACT

Whereas dye-sensitized lanthanide-doped nanoparticles represent an unquestionable advance for pushing linear near-infrared (NIR) to visible-light upconversion within the frame of applications, analogous improvements are difficult to mimic for related but intramolecular processes induced at the molecular level in coordination complexes. Major difficulties arise from the cationic nature of the target cyanine-containing sensitizers (S), which drastically limits their thermodynamic affinities for catching the lanthanide activators (A) required for performing linear light upconversion. In this context, the rare previous design of stable dye-containing molecular SA light-upconverters required large S···A distances at the cost of the operation of only poorly efficient intramolecular S → A energy transfers and global sensitization. With the synthesis of the compact ligand [L2]+, we exploit here the benefit of using a single sulfur connector between the dye and the binding unit for counterbalancing the drastic electrostatic penalty which is expected to prevent metal complexation. Quantitative amounts of nine-coordinate [L2Er(hfac)3]+ molecular adducts could be finally prepared in solution at millimolar concentrations, while the S···A distance has been reduced by 40% to reach circa 0.7 nm. Detailed photophysical studies demonstrate the operation of a three times improved energy transfer upconversion (ETU) mechanism for molecular [L2Er(hfac)3]+ in acetonitrile at room temperature, thanks to the boosted heavy atom effect operating in the close cyanine/Er pair. NIR excitation at 801 nm can thus be upconverted into visible light (525-545 nm) with an unprecedented brightness of Bup(801 nm) = 2.0(1) × 10-3 M-1·cm-1 for a molecular lanthanide complex.

5.
Small ; 19(38): e2303721, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37208800

ABSTRACT

Although metal-containing organic polymers are becoming essential for modern applications in lighting, catalysis, and electronic devices, very little is known about their controlled metallic loading, which mainly limits their design to empirical mixing followed by characterization and often hampers rational developments. Focusing on the appealing optical and magnetic properties of 4f-block cations, the host-guest reactions leading to linear lanthanidopolymers already display some unexpected dependence of the binding-site affinities on the length of the organic polymer backbone: a drift usually, and erroneously, assigned to intersite cooperativity. Taking advantage of the parameters obtained for the stepwise thermodynamic loading of a series of rigid linear multi-tridentate organic receptors with increasing length, N = 1 (monomer L1), N = 2 (dimer L2), and N = 3 (trimer L3), with [Ln(hfa)3] containers in solution (Ln = trivalent lanthanide cations, hfa- = 1,1,1,5,5,5-hexafluoro-pentane-2,4-dione anion), it is demonstrated here that the site-binding model, based on the Potts-Ising approach, successfully predicts the binding properties of the novel soluble polymer P2N made up of nine successive binding units . An in-depth examination of the photophysical properties of these lanthanidopolymers shows impressive UV→vis downshifting quantum yields for the europium-based red luminescence, which can be modulated by the length of the polymeric chain.

6.
Small ; 19(24): e2207857, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36895069

ABSTRACT

Despite enormous progress and improvement in photocatalytic CO2 reduction reaction (CO2 RR), the development of photocatalysts that suppress H2 evolution reaction (HER), during CO2 RR, remains still a challenge. Here, new insight is presented for controllable CO2 RR selectivity by tuning the architecture of the photocatalyst. Au/carbon nitride with planar structure (p Au/CN) showed high activity for HER with 87% selectivity. In contrast, the same composition with a yolk@shell structure (Y@S Au@CN) exhibited high selectivity of carbon products by suppressing the HER to 26% under visible light irradiation. Further improvement for CO2 RR activity was achieved by a surface decoration of the yolk@shell structure with Au25 (PET)18 clusters as favorable electron acceptors, resulting in longer charge separation in Au@CN/Auc Y@S structure. Finally, by covering the structure with graphene layers, the designed catalyst maintained high photostability during light illumination and showed high photocatalytic efficiency. The optimized Au@CN/Auc /G Y@S structure displays high photocatalytic CO2 RR selectivity of 88%, where the CO and CH4 generations during 8 h are 494 and 198 µmol/gcat., respectively. This approach combining architecture engineering and composition modification provides a new strategy with improved activity and controllable selectivity toward targeting applications in energy conversion catalysis.

7.
Angew Chem Int Ed Engl ; 62(50): e202314503, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-37847515

ABSTRACT

Previously limited to highly symmetrical homoleptic triple-helical complexes [Er(Lk)3 ]3+ , where Lk are polyaromatic tridentate ligands, single-center molecular-based upconversion using linear optics and exploiting the excited-state absorption mechanism (ESA) greatly benefits from the design of stable and low-symmetrical [LkEr(hfa)3 ] heteroleptic adducts (hfa- =hexafluoroacetylacetonate anion). Depending on (i) the extended π-electron delocalization, (ii) the flexibility and (iii) the heavy atom effect brought by the bound ligand Lk, the near-infrared (801 nm) to visible green (542 nm) upconversion quantum yield measured for [LkEr(hfa)3 ] in solution at room temperature can be boosted by up to three orders of magnitude.

8.
Angew Chem Int Ed Engl ; 62(29): e202304075, 2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37158668

ABSTRACT

A chiral bispyrene macrocycle designed for exclusive intermolecular excimer fluorescence upon aggregation was synthesized by a double hydrothiolation of a bis-enol ether macrocycle followed by intramolecular oxidation of free thiols. Unusually high stereoselectivity was achieved for the thiol-ene additions under templated conditions and Et3 B/O2 radical initiation. After enantiomer separation (chiral stationary phase HPLC), aqueous conditions provoked aggregation. Detailed structural evolution was afforded by ECD/CPL monitoring. Three regimes can be observed and characterized by strong modifications in chiroptical patterns under, at, or above a 70 % H2 O : THF threshold. In luminescence, high glum dissymmetry factors values were obtained, up to 0.022, as well as a double sign inversion of CPL signals during the aggregation, a behavior rationalized by time-dependent density functional theory (TDDFT) calculations. Langmuir layers of enantiopure disulfide macrocycles were formed at the air-water interface and transferred onto solid substrates to afford Langmuir-Blodgett films, which were then studied by AFM and UV/ECD/fluorescence/CPL.

9.
Angew Chem Int Ed Engl ; 62(16): e202215746, 2023 Apr 11.
Article in English | MEDLINE | ID: mdl-36728623

ABSTRACT

A bidentate chiral dithiol (diBINAS) is utilised to bridge Au25 nanoclusters to form oligomers. Separation by size allows the isolation of fractions that are stable thanks to the bidentate nature of the linker. The structure of the products is elucidated by small-angle X-ray scattering and calculated using density functional theory. Additional structural details are studied by diffusion-ordered nuclear magnetic resonance spectroscopy, transmission electron microscopy and matrix-assisted laser desorption/ionization time of flight mass spectrometry. Significant changes in the optical properties are analysed by UV/Vis and fluorescence spectroscopies, with the latter demonstrating a strong emission enhancement. Furthermore, the emergent chiral characteristics are studied by circular dichroism. Due to the geometry constraints of the nanocluster assemblies, diBINAS can be regarded as a templating molecule, taking a step towards the directed self-assembly of metal clusters.

10.
J Chem Phys ; 153(4): 040902, 2020 Jul 28.
Article in English | MEDLINE | ID: mdl-32752717

ABSTRACT

Photochemical electron transfer between freely diffusing molecules has been studied extensively. Here, we try to elucidate how much these works have contributed to the understanding of electron transfer. To this end, we have revisited the work performed in the experimental and theoretical areas of concern from the beginning of the 20th century up to the present day. We present a critical look at the major contributions and compile the current picture of a variety of phenomena around electron transfer in solution. This is based on two main developments, besides the theory of Marcus: encounter theories of diffusion and laser techniques in time-resolved spectroscopy.

11.
J Chem Phys ; 152(24): 244501, 2020 Jun 28.
Article in English | MEDLINE | ID: mdl-32610996

ABSTRACT

Electron transfer (ET) quenching dynamics in non-polar solvents are investigated using ultrafast spectroscopy with a series of six fluorophore/quencher pairs, covering a driving force range of more than 1.3 eV. The intrinsic ET rate constants, k0, deduced from the quenching dynamics in the static regime, are of the order of 1012-1013 M-1 s-1, i.e., at least as large as in acetonitrile, and do not exhibit any marked dependence on the driving force. A combination of transient electronic and vibrational absorption spectroscopy measurements reveals that the primary product of static quenching is a strongly coupled exciplex that decays within a few picoseconds. More weakly coupled exciplexes with a longer lifetime are generated subsequently, during the dynamic, diffusion-controlled, stage of the quenching. The results suggest that static ET quenching in non-polar solvents should be viewed as an internal conversion from a locally excited state to a charge-transfer state of a supermolecule rather than as a non-adiabatic ET process.

12.
Chem Rev ; 117(16): 10826-10939, 2017 Aug 23.
Article in English | MEDLINE | ID: mdl-27957848

ABSTRACT

Ultrafast photochemical reactions in liquids occur on similar or shorter time scales compared to the equilibration of the optically populated excited state. This equilibration involves the relaxation of intramolecular and/or solvent modes. As a consequence, the reaction dynamics are no longer exponential, cannot be quantified by rate constants, and may depend on the excitation wavelength contrary to slower photochemical processes occurring from equilibrated excited states. Such ultrafast photoinduced reactions do no longer obey the Kasha-Vavilov rule. Nonequilibrium effects are also observed in diffusion-controlled intermolecular processes directly after photoexcitation, and their proper description gives access to the intrinsic reaction dynamics that are normally hidden by diffusion. Here we discuss these topics in relation to ultrafast organic photochemical reactions in homogeneous liquids. Discussed reactions include intra- and intermolecular electron- and proton-transfer processes, as well as photochromic reactions occurring with and without bond breaking or bond formation, namely ring-opening reactions and cis-trans isomerizations, respectively.

13.
Molecules ; 24(23)2019 Nov 29.
Article in English | MEDLINE | ID: mdl-31795316

ABSTRACT

The formation of a halogen-bond (XB) complex in the excited state was recently reported with a quadrupolar acceptor-donor-acceptor dye in two iodine-based liquids (J. Phys. Chem. Lett. 2017, 8, 3927-3932). The ultrafast decay of this excited complex to the ground state was ascribed to an electron transfer quenching by the XB donors. We examined the mechanism of this process by investigating the quenching dynamics of the dye in the S1 state using the same two iodo-compounds diluted in inert solvents. The results were compared with those obtained with a non-halogenated electron acceptor, fumaronitrile. Whereas quenching by fumaronitrile was found to be diffusion controlled, that by the two XB compounds is slower, despite a larger driving force for electron transfer. A Smoluchowski-Collins-Kimball analysis of the excited-state population decays reveals that both the intrinsic quenching rate constant and the quenching radius are significantly smaller with the XB compounds. These results point to much stronger orientational constraint for quenching with the XB compounds, indicating that electron transfer occurs upon formation of the halogen bond.


Subject(s)
Fumarates/chemistry , Halogens/chemistry , Models, Chemical , Electron Transport
14.
Chemistry ; 24(44): 11386-11392, 2018 Aug 06.
Article in English | MEDLINE | ID: mdl-29869811

ABSTRACT

Diketopyrrolopyrroles (DPPs) have recently attracted much interest as very bright and photostable red-emitting molecules. However, their tendency to form nonfluorescent aggregates in water through the aggregation-caused quenching (ACQ) effect is a major issue that limits their application under the microscope. Herein, two DPP molecules have been incorporated into the membrane of highly stable and water-soluble quatsomes (QS; nanovesicles composed of surfactants and sterols), which allow their nanostructuration in water and, at the same time, limits the ACQ effect. The obtained fluorescent organic nanoparticles showed superior structural homogeneity, along with long-term colloidal and optical stability. A thorough one- (1P) and two-photon (2P) fluorescence characterization revealed the promising photophysical features of these fluorescent nanovesicles, which showed a high 1P and 2P brightness. Finally, the fluorescent QSs were used for the in vitro bioimaging of Saos-2 osteosarcoma cell lines; this demonstrates their potential as nanomaterials for bioimaging applications.


Subject(s)
Fluorescent Dyes/chemistry , Ketones/chemistry , Nanostructures/chemistry , Optical Imaging/methods , Pyrroles/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Humans , Light , Particle Size , Photons , Solubility , Surface Properties , Water
15.
Phys Chem Chem Phys ; 20(39): 25531-25546, 2018 Oct 10.
Article in English | MEDLINE | ID: mdl-30277232

ABSTRACT

The ultimate goal of chemical kinetics is to understand why a given reaction is fast or not. To this end it is necessary to count on robust and experimentally well tested theories. One of the difficulties, long recognized in the study of bimolecular reactions, is the role of the molecular displacement, i.e. diffusion. Nonetheless the field is still lacking a compelling amount of case studies contrasting physical models to experiments. By performing transient absorption experiments on the photo-induced electron transfer reaction between perylene and N,N-dimethylaniline in liquid solutions over many orders of magnitude in time, we try to understand the factors determining the kinetics and yields of the full photocycle. We present a method to overcome potential pitfalls in the extraction of the relevant quantities, the transient populations, from the experimental data due to the changes in band shapes and positions. The results are compared to simulations of two different theories: a reaction-diffusion approach based on the encounter theories, and a formal kinetic scheme. We conclude that while the former explains the observed trends in the kinetics with quencher concentration and viscosity exceptionally well, the latter fails. Moreover the analysis of the data with the assistance of encounter theory unveils effects that otherwise would pass unnoticed. This approach and its results exemplify the path to follow in other condensed media whenever diffusion is involved.

16.
Phys Chem Chem Phys ; 20(10): 7254-7264, 2018 Mar 07.
Article in English | MEDLINE | ID: mdl-29484322

ABSTRACT

The excited-state dynamics of the push-pull azobenzene Methyl Orange (MO) were investigated in several solvents and water/glycerol mixtures using a combination of ultrafast time-resolved fluorescence and transient absorption in both the UV-visible and the IR regions, as well as quantum chemical calculations. Optical excitation of MO in its trans form results in the population of the S2 ππ* state and is followed by internal conversion to the S1 nπ* state in ∼50 fs. The population of this state decays on the sub-picosecond timescale by both internal conversion to the trans ground state and isomerisation to the cis ground state. Finally, the cis form converts thermally to the trans form on a timescale ranging from less than 50 ms to several minutes. Significant differences depending on the hydrogen-bond donor strength of the solvents, quantified by the Kamlet Taft parameter α, were observed: compared to the other solvents, in highly protic solvents (α > 1), (i) the viscosity dependence of the S1 state lifetime is less pronounced, (ii) the S1 state lifetime is shorter by a factor of ≈1.5 for the same viscosity, (iii) the trans-to-cis photoisomerisation efficiency is smaller, and (iv) the thermal cis-to-trans isomerisation is faster by a factor of ≥103. These differences are explained in terms of hydrogen-bond interactions between the solvent and the azo nitrogen atoms of MO, which not only change the nature of the S1 state but also have an impact on the shape of ground- and excited-state potentials, and, thus, affect the deactivation pathways from the excited state.

17.
Angew Chem Int Ed Engl ; 57(33): 10559-10563, 2018 08 13.
Article in English | MEDLINE | ID: mdl-29924457

ABSTRACT

Bent N,N'-diphenyl-dihydrodibenzo[a,c]phenazine amphiphiles are introduced as mechanosensitive membrane probes that operate by an unprecedented mechanism, namely, unbending in the excited state as opposed to the previously reported untwisting in the ground and twisting in the excited state. Their dual emission from bent or "closed" and planarized or "open" excited states is shown to discriminate between micelles in water and monomers in solid-ordered (So ), liquid-disordered (Ld ) and bulk membranes. The dual-emission spectra cover enough of the visible range to produce vesicles that emit white light with ratiometrically encoded information. Strategies to improve the bent mechanophores with expanded π systems and auxochromes are reported, and compatibility with imaging of membrane domains in giant unilamellar vesicles by two-photon excitation fluorescence (TPEF) microscopy is demonstrated.

18.
J Am Chem Soc ; 139(46): 16885-16893, 2017 11 22.
Article in English | MEDLINE | ID: mdl-29068229

ABSTRACT

The excited-state dynamics of an aniline-triazine electron donor-acceptor dyad with an alkyne spacer has been investigated using a combination of ultrafast broadband mid-IR and visible transient absorption and fluorescence spectroscopies. The transient IR data reveal the occurrence of an efficient alkyne to allene isomerization of the spacer with a time constant increasing from a few hundreds of femtoseconds to a few picoseconds with solvent viscosity. This process is faster than the vibrational cooling of the Franck-Condon excited state, indicative of nonequilibrium dynamics. The transient electronic absorption and fluorescence data evidence that this transformation is accompanied by a charge separation between the donor and the acceptor subunits. The allene character of the spacer implies an orthogonal orientation of the donor and acceptor moieties, similar to that proposed for twisted intramolecular charge-transfer states. Such states are often invoked in the excited-state dynamics of donor-acceptor dyads, but their involvement could never be unambiguously evidenced spectroscopically. The alkyne-allene isomerization involves not only a torsional motion but also a bending of the molecule due to the sp to sp2 rehybridization of one of the alkyne carbon atoms. This twisted and rehybridized intramolecular charge transfer ("TRICT") state decays back to the planar and linear alkyne ground state on a time scale decreasing from a few hundred to ten picoseconds upon going from weakly to highly polar solvents. The different solvent dependencies reveal that the dynamics of the allene buildup are controlled by the structural changes, whereas the decay is limited by the charge recombination step.

19.
Phys Chem Chem Phys ; 19(13): 8815-8825, 2017 Mar 29.
Article in English | MEDLINE | ID: mdl-28294266

ABSTRACT

Polar solvation dynamics of six 7-aminocoumarins and 4-aminophthalimide (4AP) are investigated using broadband FLuorescence UP-conversion Spectroscopy (FLUPS) combined with a global analysis based on time-dependent band-shape functions. The solvation dynamics of the coumarins in ethanol exhibit only minor differences but are, however, significantly different from that of 4AP. The band-shape parameters, width and asymmetry, exhibit much larger variation even among the coumarins and are correlated with the amount of excess excitation energy. Differences in the solvation dynamics of 4AP and a selected coumarin, C151, are also observed in dimethyl sulfoxide demonstrating the molecularity of solvation i.e. solvation depends on the solute and does not solely reflect the dynamic properties of the solvent. These differences are attributed to specific solute-solvent interactions due to hydrogen bonding. In a weakly interacting solvent, benzonitrile, the solvation dynamics of 4AP and C151 are nearly identical.

20.
J Chem Phys ; 146(24): 244505, 2017 Jun 28.
Article in English | MEDLINE | ID: mdl-28668044

ABSTRACT

The dynamics of unimolecular photo-triggered reactions can be strongly affected by the surrounding medium for which a large number of theoretical descriptions have been used in the past. An accurate description of these reactions requires knowing the potential energy surface and the friction felt by the reactants. Most of these theories start from the Langevin equation to derive the dynamics, but there are few examples comparing it with experiments. Here we explore the applicability of a Generalized Langevin Equation (GLE) with an arbitrary potential and a non-Markovian friction. To this end, we have performed broadband fluorescence measurements with sub-picosecond time resolution of a covalently linked organic electron donor-acceptor system in solvents of changing viscosity and dielectric permittivity. In order to establish the free energy surface (FES) of the reaction, we resort to stationary electronic spectroscopy. On the other hand, the dynamics of a non-reacting substance, Coumarin 153, provide the calibrating tool for the non-Markovian friction over the FES, which is assumed to be solute independent. A simpler and computationally faster approach uses the Generalized Smoluchowski Equation (GSE), which can be derived from the GLE for pure harmonic potentials. Both approaches reproduce the measurements in most of the solvents reasonably well. At long times, some differences arise from the errors inherited from the analysis of the stationary solvatochromism and at short times from the excess excitation energy. However, whenever the dynamics become slow, the GSE shows larger deviations than the GLE, the results of which always agree qualitatively with the measured dynamics, regardless of the solvent viscosity or dielectric properties. The method applied here can be used to predict the dynamics of any other reacting system, given the FES parameters and solvent dynamics are provided. Thus no fitting parameters enter the GLE simulations, within the applicability limits found for the model in this work.

SELECTION OF CITATIONS
SEARCH DETAIL