Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Publication year range
1.
J Microsc ; 238(3): 200-9, 2010 Jun 01.
Article in English | MEDLINE | ID: mdl-20579258

ABSTRACT

This paper reports a procedure to combine the focused ion beam micro-sampling method with conventional Ar-milling to prepare high-quality site-specific transmission electron microscopy cross-section samples. The advantage is to enable chemical and structural evaluations of oxygen dissolved in a molten iron sample to be made after quenching and recovery from high-pressure experiments in a laser-heated diamond anvil cell. The evaluations were performed by using electron energy-loss spectroscopy and high-resolution transmission electron microscopy. The high signal to noise ratios of electron energy-loss spectroscopy core-loss spectra from the transmission electron microscopy thin foil, re-thinned down to 40 nm in thickness by conventional Argon ion milling, provided us with oxygen quantitative analyses of the quenched molten iron phase. In addition, we could obtain lattice-fringe images using high-resolution transmission electron microscopy. The electron energy-loss spectroscopy analysis of oxygen in Fe(0.94)O has been carried out with a relative accuracy of 2%, using an analytical procedure proposed for foils thinner than 80 nm. Oxygen K-edge energy-loss near-edge structure also allows us to identify the specific phase that results from quenching and its electronic structure by the technique of fingerprinting of the spectrum with reference spectra in the Fe-O system.

2.
Science ; 269(5227): 1095-8, 1995 Aug 25.
Article in English | MEDLINE | ID: mdl-17755533

ABSTRACT

Although enstatite is a major constituent of the Earth's upper mantle and subducting lithosphere, most kinetic studies of olivine phase transformations have typically involved single-phase polycrystalline aggregates. Transmission electron microscopy investigations of olivine to spinel and modified spinel (beta phase) reactions in the (Mg, Fe)(2)SiO(4)-(Mg,Fe)SiO(3) system show that transformation of olivine in the stability field of spinel plus phase begins with coherent nucleation of spinel on high-clinoenstatite grains. These observations demonstrate that high clinoenstatite can catalyze the transformation by enhancing nucleation kinetics and therefore imply that secondary phases can influence reaction kinetics during high-pressure mineral transformations.

3.
Science ; 264(5164): 1445-8, 1994 Jun 03.
Article in English | MEDLINE | ID: mdl-17838430

ABSTRACT

The mechanisms of the phase transformations between the spinel (gamma) and modified spinel (beta) polymorphs of Mg(2)SiO(4) have been studied experimentally between 15 and 20 gigapascals and 800 degrees to 950 degrees C. The gamma to beta transformation occurs by a shear mechanism, whereas the beta to gamma transformation involves grain-boundary nucleation and interface-controlled growth. These contrasting mechanisms are a consequence of the number of independent slip systems that are available in the respective crystal structures. This result leads to the prediction that in subduction zones and perhaps also rising plumes in the Earth's mantle, the gamma to beta transformation should be accompanied by a transient reduction in strength.

4.
Science ; 264(5164): 1442-5, 1994 Jun 03.
Article in English | MEDLINE | ID: mdl-17838429

ABSTRACT

The abundances of siderophile elements in the Earth's silicate mantle are too high for the mantle to have been in equilibrium with iron in the core if equilibrium occurred at low pressures and temperatures. It has been proposed that this problem may be solved if equilibrium occurred at high pressures and temperatures. Experimental determination of the distribution of siderophile elements between liquid metal and liquid silicate at 100 kilobar and 2000 degrees C demonstrates that it is unlikely that siderophile element abundances were established by simple metal-silicate equilibrium, which indicates that the segregation of the core from the mantle was a complex process.

5.
Philos Trans A Math Phys Eng Sci ; 366(1883): 4315-37, 2008 Nov 28.
Article in English | MEDLINE | ID: mdl-18826924

ABSTRACT

Siderophile elements are depleted in the Earth's mantle, relative to chondritic meteorites, as a result of equilibration with core-forming Fe-rich metal. Measurements of metal-silicate partition coefficients show that mantle depletions of slightly siderophile elements (e.g. Cr, V) must have occurred at more reducing conditions than those inferred from the current mantle FeO content. This implies that the oxidation state (i.e. FeO content) of the mantle increased with time as accretion proceeded. The oxygen fugacity of the present-day upper mantle is several orders of magnitude higher than the level imposed by equilibrium with core-forming Fe metal. This results from an increase in the Fe2O3 content of the mantle that probably occurred in the first 1Ga of the Earth's history. Here we explore fractionation mechanisms that could have caused mantle FeO and Fe2O3 contents to increase while the oxidation state of accreting material remained constant (homogeneous accretion). Using measured metal-silicate partition coefficients for O and Si, we have modelled core-mantle equilibration in a magma ocean that became progressively deeper as accretion proceeded. The model indicates that the mantle would have become gradually oxidized as a result of Si entering the core. However, the increase in mantle FeO content and oxygen fugacity is limited by the fact that O also partitions into the core at high temperatures, which lowers the FeO content of the mantle. (Mg,Fe)(Al,Si)O3 perovskite, the dominant lower mantle mineral, has a strong affinity for Fe2O3 even in the presence of metallic Fe. As the upper mantle would have been poor in Fe2O3 during core formation, FeO would have disproportionated to produce Fe2O3 (in perovskite) and Fe metal. Loss of some disproportionated Fe metal to the core would have enriched the remaining mantle in Fe2O3 and, if the entire mantle was then homogenized, the oxygen fugacity of the upper mantle would have been raised to its present-day level.


Subject(s)
Ferric Compounds , Oxidation-Reduction , Earth, Planet , Metals , Oxygen
SELECTION OF CITATIONS
SEARCH DETAIL