Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 235
Filter
1.
Hum Mol Genet ; 31(23): 3945-3966, 2022 11 28.
Article in English | MEDLINE | ID: mdl-35848942

ABSTRACT

Given the highly variable clinical phenotype of Coronavirus disease 2019 (COVID-19), a deeper analysis of the host genetic contribution to severe COVID-19 is important to improve our understanding of underlying disease mechanisms. Here, we describe an extended genome-wide association meta-analysis of a well-characterized cohort of 3255 COVID-19 patients with respiratory failure and 12 488 population controls from Italy, Spain, Norway and Germany/Austria, including stratified analyses based on age, sex and disease severity, as well as targeted analyses of chromosome Y haplotypes, the human leukocyte antigen region and the SARS-CoV-2 peptidome. By inversion imputation, we traced a reported association at 17q21.31 to a ~0.9-Mb inversion polymorphism that creates two highly differentiated haplotypes and characterized the potential effects of the inversion in detail. Our data, together with the 5th release of summary statistics from the COVID-19 Host Genetics Initiative including non-Caucasian individuals, also identified a new locus at 19q13.33, including NAPSA, a gene which is expressed primarily in alveolar cells responsible for gas exchange in the lung.


Subject(s)
COVID-19 , Humans , COVID-19/genetics , SARS-CoV-2/genetics , Genome-Wide Association Study , Haplotypes , Polymorphism, Genetic
2.
EMBO J ; 39(15): e104749, 2020 08 03.
Article in English | MEDLINE | ID: mdl-32525588

ABSTRACT

CCR5 is not only a coreceptor for HIV-1 infection in CD4+ T cells, but also contributes to their functional fitness. Here, we show that by limiting transcription of specific ceramide synthases, CCR5 signaling reduces ceramide levels and thereby increases T-cell antigen receptor (TCR) nanoclustering in antigen-experienced mouse and human CD4+ T cells. This activity is CCR5-specific and independent of CCR5 co-stimulatory activity. CCR5-deficient mice showed reduced production of high-affinity class-switched antibodies, but only after antigen rechallenge, which implies an impaired memory CD4+ T-cell response. This study identifies a CCR5 function in the generation of CD4+ T-cell memory responses and establishes an antigen-independent mechanism that regulates TCR nanoclustering by altering specific lipid species.


Subject(s)
Antigens/immunology , CD4-Positive T-Lymphocytes/immunology , Ceramides/immunology , Immunologic Memory , Receptors, CCR5/deficiency , Animals , Antigens/genetics , CD4-Positive T-Lymphocytes/cytology , Ceramides/genetics , HEK293 Cells , Humans , Mice , Mice, Knockout , Receptors, CCR5/immunology
3.
Alzheimers Dement ; 20(2): 1298-1308, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37985413

ABSTRACT

INTRODUCTION: Genome-wide association studies (GWAS) are fundamental for identifying loci associated with diseases. However, they require replication in other ethnicities. METHODS: We performed GWAS on sporadic Alzheimer's disease (AD) including 539 patients and 854 controls from Argentina and Chile. We combined our results with those from the European Alzheimer and Dementia Biobank (EADB) in a meta-analysis and tested their genetic risk score (GRS) performance in this admixed population. RESULTS: We detected apolipoprotein E ε4 as the single genome-wide significant signal (odds ratio  = 2.93 [2.37-3.63], P = 2.6 × 10-23 ). The meta-analysis with EADB summary statistics revealed four new loci reaching GWAS significance. Functional annotations of these loci implicated endosome/lysosomal function. Finally, the AD-GRS presented a similar performance in these populations, despite the score diminished when the Native American ancestry rose. DISCUSSION: We report the first GWAS on AD in a population from South America. It shows shared genetics modulating AD risk between the European and these admixed populations. HIGHLIGHTS: This is the first genome-wide association study on Alzheimer's disease (AD) in a population sample from Argentina and Chile. Trans-ethnic meta-analysis reveals four new loci involving lysosomal function in AD. This is the first independent replication for TREM2L, IGH-gene-cluster, and ADAM17 loci. A genetic risk score (GRS) developed in Europeans performed well in this population. The higher the Native American ancestry the lower the GRS values.


Subject(s)
Alzheimer Disease , Azides , Genome-Wide Association Study , Humans , Chile , Alzheimer Disease/genetics , Genetic Predisposition to Disease/genetics , Polymorphism, Single Nucleotide/genetics
4.
Brain ; 145(7): 2507-2517, 2022 07 29.
Article in English | MEDLINE | ID: mdl-35088840

ABSTRACT

Alzheimer's disease has a long asymptomatic phase that offers a substantial time window for intervention. Using this window of opportunity will require early diagnostic and prognostic biomarkers to detect Alzheimer's disease pathology at predementia stages, thus allowing identification of patients who will most probably progress to dementia of the Alzheimer's type and benefit from specific disease-modifying therapies. Consequently, we searched for CSF proteins associated with disease progression along with the clinical disease staging. We measured the levels of 184 proteins in CSF samples from 556 subjective cognitive decline and mild cognitive impairment patients from three independent memory clinic longitudinal studies (Spanish ACE, n = 410; German DCN, n = 93; German Mannheim, n = 53). We evaluated the association between protein levels and clinical stage, and the effect of protein levels on the progression from mild cognitive impairment to dementia of the Alzheimer's type. Mild cognitive impairment subjects with increased CSF level of matrix metalloproteinase 10 (MMP-10) showed a higher probability of progressing to dementia of the Alzheimer's type and a faster cognitive decline. CSF MMP-10 increased the prediction accuracy of CSF amyloid-ß 42 (Aß42), phospho-tau 181 (P-tau181) and total tau (T-tau) for conversion to dementia of the Alzheimer's type. Including MMP-10 to the [A/T/(N)] scheme improved considerably the prognostic value in mild cognitive impairment patients with abnormal Aß42, but normal P-tau181 and T-tau, and in mild cognitive impairment patients with abnormal Aß42, P-tau181 and T-tau. MMP-10 was correlated with age in subjects with normal Aß42, P-tau181 and T-tau levels. Our findings support the use of CSF MMP-10 as a prognostic marker for dementia of the Alzheimer's type and its inclusion in the [A/T/(N)] scheme to incorporate pathologic aspects beyond amyloid and tau. CSF level of MMP-10 may reflect ageing and neuroinflammation.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Matrix Metalloproteinase 10 , Alzheimer Disease/pathology , Amyloid beta-Peptides , Biomarkers , Cognitive Dysfunction/diagnosis , Disease Progression , Humans , Longitudinal Studies , Matrix Metalloproteinase 10/cerebrospinal fluid , Peptide Fragments , tau Proteins
5.
J Nanobiotechnology ; 21(1): 54, 2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36788617

ABSTRACT

In the clinical course of Alzheimer's disease (AD) development, the dementia phase is commonly preceded by a prodromal AD phase, which is mainly characterized by reaching the highest levels of Aß and p-tau-mediated neuronal injury and a mild cognitive impairment (MCI) clinical status. Because of that, most AD cases are diagnosed when neuronal damage is already established and irreversible. Therefore, a differential diagnosis of MCI causes in these prodromal stages is one of the greatest challenges for clinicians. Blood biomarkers are emerging as desirable tools for pre-screening purposes, but the current results are still being analyzed and much more data is needed to be implemented in clinical practice. Because of that, plasma extracellular vesicles (pEVs) are gaining popularity as a new source of biomarkers for the early stages of AD development. To identify an exosome proteomics signature linked to prodromal AD, we performed a cross-sectional study in a cohort of early-onset MCI (EOMCI) patients in which 184 biomarkers were measured in pEVs, cerebrospinal fluid (CSF), and plasma samples using multiplex PEA technology of Olink© proteomics. The obtained results showed that proteins measured in pEVs from EOMCI patients with established amyloidosis correlated with CSF p-tau181 levels, brain ventricle volume changes, brain hyperintensities, and MMSE scores. In addition, the correlations of pEVs proteins with different parameters distinguished between EOMCI Aß( +) and Aß(-) patients, whereas the CSF or plasma proteome did not. In conclusion, our findings suggest that pEVs may be able to provide information regarding the initial amyloidotic changes of AD. Circulating exosomes may acquire a pathological protein signature of AD before raw plasma, becoming potential biomarkers for identifying subjects at the earliest stages of AD development.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Extracellular Vesicles , Humans , Amyloid beta-Peptides , Cross-Sectional Studies , Alzheimer Disease/metabolism , Cognitive Dysfunction/diagnosis , tau Proteins/cerebrospinal fluid , Extracellular Vesicles/metabolism , Biomarkers , Peptide Fragments
6.
Alzheimers Dement ; 19(12): 5550-5562, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37260021

ABSTRACT

INTRODUCTION: Most Alzheimer's disease (AD) loci have been discovered in individuals with European ancestry (EA). METHODS: We applied principal component analysis using Gaussian mixture models and an Ashkenazi Jewish (AJ) reference genome-wide association study (GWAS) data set to identify Ashkenazi Jews ascertained in GWAS (n = 42,682), whole genome sequencing (WGS, n = 16,815), and whole exome sequencing (WES, n = 20,504) data sets. The association of AD was tested genome wide (GW) in the GWAS and WGS data sets and exome wide (EW) in all three data sets (EW). Gene-based analyses were performed using aggregated rare variants. RESULTS: In addition to apolipoprotein E (APOE), GW analyses (1355 cases and 1661 controls) revealed associations with TREM2 R47H (p = 9.66 × 10-9 ), rs541586606 near RAB3B (p = 5.01 × 10-8 ), and rs760573036 between SPOCK3 and ANXA10 (p = 6.32 × 10-8 ). In EW analyses (1504 cases and 2047 controls), study-wide significant association was observed with rs1003710 near SMAP2 (p = 1.91 × 10-7 ). A significant gene-based association was identified with GIPR (p = 7.34 × 10-7 ). DISCUSSION: Our results highlight the efficacy of founder populations for AD genetic studies.


Subject(s)
Alzheimer Disease , Genome-Wide Association Study , Humans , Jews/genetics , Genetic Predisposition to Disease/genetics , Alzheimer Disease/genetics , Ethnicity , Polymorphism, Single Nucleotide/genetics
7.
Int J Mol Sci ; 24(3)2023 Jan 22.
Article in English | MEDLINE | ID: mdl-36768512

ABSTRACT

Cholesterol efflux capacity (CEC) is of interest given its potential relationship with several important clinical conditions including Alzheimer's disease. The inactivation of the APOE locus in mouse models supports the idea that it is involved in determining the CEC. With that in mind, we examine the impact of the plasma metabolome profile and the APOE genotype on the CEC in cognitively healthy elderly subjects. The study subjects were 144 unrelated healthy individuals. The plasma CEC was determined by exposing cultured mouse macrophages treated with BODIPY-cholesterol to human plasma. The metabolome profile was determined using NMR techniques. Multiple regression was performed to identify the most important predictors of CEC, as well as the NMR features most strongly associated with the APOE genotype. Plasma 3-hydroxybutyrate was the variable most strongly correlated with the CEC (r = 0.365; p = 7.3 × 10-6). Male sex was associated with a stronger CEC (r = -0.326, p = 6.8 × 10-5). Most of the NMR particles associated with the CEC did not correlate with the APOE genotype. The NMR metabolomics results confirmed the APOE genotype to have a huge effect on the concentration of plasma lipoprotein particles as well as those of other molecules including omega-3 fatty acids. In conclusion, the CEC of human plasma was associated with ketone body concentration, sex, and (to a lesser extent) the other features of the plasma lipoprotein profile. The APOE genotype exerted only a weak effect on the CEC via the modulation of the lipoprotein profile. The APOE locus was associated with omega-3 fatty acid levels independent of the plasma cholesterol level.


Subject(s)
Cholesterol , Fasting , Animals , Mice , Humans , Male , Adult , Aged , Magnetic Resonance Spectroscopy , Genotype , Apolipoproteins E/genetics , Cholesterol, HDL
8.
Int J Mol Sci ; 24(15)2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37569459

ABSTRACT

Genome-wide association studies (GWAS) constitute a powerful tool to identify the different biochemical pathways associated with disease. This knowledge can be used to prioritize drugs targeting these routes, paving the road to clinical application. Here, we describe DAGGER (Drug Repositioning by Analysis of GWAS and Gene Expression in R), a straightforward pipeline to find currently approved drugs with repurposing potential. As a proof of concept, we analyzed a meta-GWAS of 1.6 × 107 single-nucleotide polymorphisms performed on Alzheimer's disease (AD). Our pipeline uses the Genotype-Tissue Expression (GTEx) and Drug Gene Interaction (DGI) databases for a rational prioritization of 22 druggable targets. Next, we performed a two-stage in vivo functional assay. We used a C. elegans humanized model over-expressing the Aß1-42 peptide. We assayed the five top-scoring candidate drugs, finding midostaurin, a multitarget protein kinase inhibitor, to be a protective drug. Next, 3xTg AD transgenic mice were used for a final evaluation of midostaurin's effect. Behavioral testing after three weeks of 20 mg/kg intraperitoneal treatment revealed a significant improvement in behavior, including locomotion, anxiety-like behavior, and new-place recognition. Altogether, we consider that our pipeline might be a useful tool for drug repurposing in complex diseases.


Subject(s)
Alzheimer Disease , Animals , Mice , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Genome-Wide Association Study , Caenorhabditis elegans/genetics , Staurosporine/therapeutic use , Drug Repositioning
9.
Int J Mol Sci ; 24(2)2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36674881

ABSTRACT

Few studies have addressed the impact of the association between Alzheimer's disease (AD) biomarkers and NPSs in the conversion to dementia in patients with mild cognitive impairment (MCI), and no studies have been conducted on the interaction effect of these two risk factors. AT(N) profiles were created using AD-core biomarkers quantified in cerebrospinal fluid (CSF) (normal, brain amyloidosis, suspected non-Alzheimer pathology (SNAP) and prodromal AD). NPSs were assessed using the Neuropsychiatric Inventory Questionnaire (NPI-Q). A total of 500 individuals with MCI were followed-up yearly in a memory unit. Cox regression analysis was used to determine risk of conversion, considering additive and multiplicative interactions between AT(N) profile and NPSs on the conversion to dementia. A total of 224 participants (44.8%) converted to dementia during the 2-year follow-up study. Pathologic AT(N) groups (brain amyloidosis, prodromal AD and SNAP) and the presence of depression and apathy were associated with a higher risk of conversion to dementia. The additive combination of the AT(N) profile with depression exacerbates the risk of conversion to dementia. A synergic effect of prodromal AD profile with depressive symptoms is evidenced, identifying the most exposed individuals to conversion among MCI patients.


Subject(s)
Alzheimer Disease , Amyloidosis , Cognitive Dysfunction , Humans , Follow-Up Studies , Depression/complications , Alzheimer Disease/pathology , Cognitive Dysfunction/pathology , Amyloidosis/complications , Biomarkers/cerebrospinal fluid , Disease Progression , Neuropsychological Tests , Amyloid beta-Peptides/cerebrospinal fluid
10.
Int J Mol Sci ; 24(2)2023 Jan 04.
Article in English | MEDLINE | ID: mdl-36674414

ABSTRACT

Mosaic loss of chromosome Y (mLOY) is a common ageing-related somatic event and has been previously associated with Alzheimer's disease (AD). However, mLOY estimation from genotype microarray data only reflects the mLOY degree of subjects at the moment of DNA sampling. Therefore, mLOY phenotype associations with AD can be severely age-confounded in the context of genome-wide association studies. Here, we applied Mendelian randomisation to construct an age-independent mLOY polygenic risk score (mloy-PRS) using 114 autosomal variants. The mloy-PRS instrument was associated with an 80% increase in mLOY risk per standard deviation unit (p = 4.22 × 10-20) and was orthogonal with age. We found that a higher genetic risk for mLOY was associated with faster progression to AD in men with mild cognitive impairment (hazard ratio (HR) = 1.23, p = 0.01). Importantly, mloy-PRS had no effect on AD conversion or risk in the female group, suggesting that these associations are caused by the inherent loss of the Y chromosome. Additionally, the blood mLOY phenotype in men was associated with increased cerebrospinal fluid levels of total tau and phosphorylated tau181 in subjects with mild cognitive impairment and dementia. Our results strongly suggest that mLOY is involved in AD pathogenesis.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Male , Female , Alzheimer Disease/genetics , Chromosomes, Human, Y/genetics , Genome-Wide Association Study , Mosaicism , Risk Factors , Cognitive Dysfunction/genetics , tau Proteins/genetics , Biomarkers , Amyloid beta-Peptides/genetics
11.
Mov Disord ; 37(9): 1841-1849, 2022 09.
Article in English | MEDLINE | ID: mdl-35852957

ABSTRACT

BACKGROUND: Previous studies suggest a link between CAG repeat number in the HTT gene and non-Huntington neurodegenerative diseases. OBJECTIVE: The aim is to analyze whether expanded HTT CAG alleles and/or their size are associated with the risk for developing α-synucleinopathies or their behavior as modulators of the phenotype. METHODS: We genotyped the HTT gene CAG repeat number and APOE-Ɛ isoforms in a case-control series including patients with either clinical or neuropathological diagnosis of α-synucleinopathy. RESULTS: We identified three Parkinson's disease (PD) patients (0.30%) and two healthy controls (0.19%) carrying low-penetrance HTT repeat expansions whereas none of the dementia with Lewy bodies (DLB) or multisystem atrophy (MSA) patients carried pathogenic HTT expansions. In addition, a clear increase in the number of HTT CAG repeats was found among DLB and PD groups influenced by the male gender and also by the APOE4 allele among DLB patients. HTT intermediate alleles' (IAs) distribution frequency increased in the MSA group compared with controls (8.8% vs. 3.9%, respectively). These differences were indeed statistically significant in the MSA group with neuropathological confirmation. Two MSA HTT CAG IAs carriers with 32 HTT CAG repeats showed isolated polyQ inclusions in pons and basal nuclei, which are two critical structures in the neurodegeneration of MSA. CONCLUSIONS: Our results point to a link between HTT CAG number, HTT IAs, and expanded HTT CAG repeats with other non-HD brain pathology and support the hypothesis that they can share common neurodegenerative pathways. © 2022 International Parkinson and Movement Disorder Society.


Subject(s)
Huntingtin Protein , Huntington Disease , Multiple System Atrophy , Parkinson Disease , Synucleinopathies , Alleles , Humans , Huntingtin Protein/genetics , Huntington Disease/genetics , Male , Multiple System Atrophy/genetics , Parkinson Disease/genetics , Trinucleotide Repeat Expansion/genetics
12.
Mol Psychiatry ; 26(2): 614-628, 2021 02.
Article in English | MEDLINE | ID: mdl-30899092

ABSTRACT

In Alzheimer's disease (AD), a single-nucleotide polymorphism in the gene encoding brain-derived neurotrophic factor (BDNFVal66Met) is associated with worse impact of primary AD pathology (beta-amyloid, Aß) on neurodegeneration and cognitive decline, rendering BDNFVal66Met an important modulating factor of cognitive impairment in AD. However, the effect of BDNFVal66Met on functional networks that may underlie cognitive impairment in AD is poorly understood. Using a cross-validation approach, we first explored in subjects with autosomal dominant AD (ADAD) from the Dominantly Inherited Alzheimer Network (DIAN) the effect of BDNFVal66Met on resting-state fMRI assessed functional networks. In seed-based connectivity analysis of six major large-scale networks, we found a stronger decrease of hippocampus (seed) to medial-frontal connectivity in the BDNFVal66Met carriers compared to BDNFVal homozogytes. BDNFVal66Met was not associated with connectivity in any other networks. Next, we tested whether the finding of more pronounced decrease in hippocampal-medial-frontal connectivity in BDNFVal66Met could be also found in elderly subjects with sporadically occurring Aß, including a group with subjective cognitive decline (N = 149, FACEHBI study) and a group ranging from preclinical to AD dementia (N = 114, DELCODE study). In both of these independently recruited groups, BDNFVal66Met was associated with a stronger effect of more abnormal Aß-levels (assessed by biofluid-assay or amyloid-PET) on hippocampal-medial-frontal connectivity decreases, controlled for hippocampus volume and other confounds. Lower hippocampal-medial-frontal connectivity was associated with lower global cognitive performance in the DIAN and DELCODE studies. Together these results suggest that BDNFVal66Met is selectively associated with a higher vulnerability of hippocampus-frontal connectivity to primary AD pathology, resulting in greater AD-related cognitive impairment.


Subject(s)
Alzheimer Disease , Brain-Derived Neurotrophic Factor/genetics , Cognitive Dysfunction , Aged , Alzheimer Disease/genetics , Amyloid beta-Peptides/metabolism , Brain/metabolism , Hippocampus/metabolism , Humans , Magnetic Resonance Imaging , Polymorphism, Single Nucleotide , Positron-Emission Tomography
13.
Mol Psychiatry ; 26(10): 5797-5811, 2021 10.
Article in English | MEDLINE | ID: mdl-34112972

ABSTRACT

Psychotic symptoms, defined as the occurrence of delusions or hallucinations, are frequent in Alzheimer disease (AD with psychosis, AD + P). AD + P affects ~50% of individuals with AD, identifies a subgroup with poor outcomes, and is associated with a greater degree of cognitive impairment and depressive symptoms, compared to subjects without psychosis (AD - P). Although the estimated heritability of AD + P is 61%, genetic sources of risk are unknown. We report a genome-wide meta-analysis of 12,317 AD subjects, 5445 AD + P. Results showed common genetic variation accounted for a significant portion of heritability. Two loci, one in ENPP6 (rs9994623, O.R. (95%CI) 1.16 (1.10, 1.22), p = 1.26 × 10-8) and one spanning the 3'-UTR of an alternatively spliced transcript of SUMF1 (rs201109606, O.R. 0.65 (0.56-0.76), p = 3.24 × 10-8), had genome-wide significant associations with AD + P. Gene-based analysis identified a significant association with APOE, due to the APOE risk haplotype ε4. AD + P demonstrated negative genetic correlations with cognitive and educational attainment and positive genetic correlation with depressive symptoms. We previously observed a negative genetic correlation with schizophrenia; instead, we now found a stronger negative correlation with the related phenotype of bipolar disorder. Analysis of polygenic risk scores supported this genetic correlation and documented a positive genetic correlation with risk variation for AD, beyond the effect of ε4. We also document a small set of SNPs likely to affect risk for AD + P and AD or schizophrenia. These findings provide the first unbiased identification of the association of psychosis in AD with common genetic variation and provide insights into its genetic architecture.


Subject(s)
Alzheimer Disease , Psychotic Disorders , Schizophrenia , Alzheimer Disease/genetics , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study , Hallucinations , Humans , Oxidoreductases Acting on Sulfur Group Donors , Polymorphism, Single Nucleotide/genetics , Psychotic Disorders/genetics , Schizophrenia/genetics
14.
Mol Biol Rep ; 49(3): 1687-1700, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34854014

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is the most common neurodegenerative disorder in humans and presents a major health problem throughout the world. The etiology of AD is complex, and many factors are implicated, including mitochondria. Mitochondrial alteration has been proposed as a possible cause of AD. Therefore, several studies have focused on finding an association between inherited mitochondrial DNA variants and AD onset. METHODS: In this study, we looked, for the first time, for a potential association between mitochondrial haplogroups or polymorphisms and AD in the Tunisian population. We also evaluated the distribution of the major genetic risk factor for AD, the apolipoprotein E epsilon 4 (APOE ε4), in this population. In total, 159 single-nucleotide polymorphisms (SNPs) of mitochondrial DNA haplogroups were genotyped in 254 individuals (58 patients and 196 controls). An additional genotyping of APOE ε4 was performed. RESULTS: No significant association between mitochondrial haplogroups and AD was found. However, two individual SNPs, A5656G (p = 0.03821, OR = 10.46) and A13759G (p = 0.03719, OR = 10.78), showed a significant association with AD. APOE 4 was confirmed as a risk factor for AD (p = 0.000014). CONCLUSION: Our findings may confirm the absence of a relation between mitochondrial haplogroups and AD and support the possible involvement of some inherited variants in the pathogenicity of AD.


Subject(s)
Alzheimer Disease , DNA, Mitochondrial , Alleles , Alzheimer Disease/epidemiology , Alzheimer Disease/genetics , Apolipoprotein E4/genetics , Apolipoproteins E/genetics , Case-Control Studies , DNA, Mitochondrial/genetics , Genetic Predisposition to Disease , Genotype , Humans , Mitochondria/genetics , Polymorphism, Single Nucleotide/genetics , Tunisia/epidemiology
15.
Alzheimers Dement ; 18(10): 1832-1845, 2022 10.
Article in English | MEDLINE | ID: mdl-34877782

ABSTRACT

INTRODUCTION: The evidence for characteristics of persons with subjective cognitive decline (SCD) associated with amyloid positivity is limited. METHODS: In 1640 persons with SCD from 20 Amyloid Biomarker Study cohort, we investigated the associations of SCD-specific characteristics (informant confirmation, domain-specific complaints, concerns, feelings of worse performance) demographics, setting, apolipoprotein E gene (APOE) ε4 carriership, and neuropsychiatric symptoms with amyloid positivity. RESULTS: Between cohorts, amyloid positivity in 70-year-olds varied from 10% to 76%. Only older age, clinical setting, and APOE ε4 carriership showed univariate associations with increased amyloid positivity. After adjusting for these, lower education was also associated with increased amyloid positivity. Only within a research setting, informant-confirmed complaints, memory complaints, attention/concentration complaints, and no depressive symptoms were associated with increased amyloid positivity. Feelings of worse performance were associated with less amyloid positivity at younger ages and more at older ages. DISCUSSION: Next to age, setting, and APOE ε4 carriership, SCD-specific characteristics may facilitate the identification of amyloid-positive individuals.


Subject(s)
Amyloidosis , Cognitive Dysfunction , Humans , Amyloid , Amyloidogenic Proteins , Apolipoprotein E4/genetics , Biomarkers , Brain/metabolism , Cognitive Dysfunction/genetics , Cognitive Dysfunction/psychology , Positron-Emission Tomography
16.
Int J Mol Sci ; 23(16)2022 Aug 18.
Article in English | MEDLINE | ID: mdl-36012569

ABSTRACT

Since 1906, when Dr. Alois Alzheimer first described in a patient "a peculiar severe disease process of the cerebral cortex", people suffering from this pathology have been waiting for a breakthrough therapy. Alzheimer's disease (AD) is an irreversible, progressive neurodegenerative brain disorder and the most common form of dementia in the elderly with a long presymptomatic phase. Worldwide, approximately 50 million people are living with dementia, with AD comprising 60-70% of cases. Pathologically, AD is characterized by the deposition of amyloid ß-peptide (Aß) in the neuropil (neuritic plaques) and blood vessels (amyloid angiopathy), and by the accumulation of hyperphosphorylated tau in neurons (neurofibrillary tangles) in the brain, with associated loss of synapses and neurons, together with glial activation, and neuroinflammation, resulting in cognitive deficits and eventually dementia. The current competitive landscape in AD consists of symptomatic treatments, of which there are currently six approved medications: three AChEIs (donepezil, rivastigmine, and galantamine), one NMDA-R antagonist (memantine), one combination therapy (memantine/donepezil), and GV-971 (sodium oligomannate, a mixture of oligosaccharides derived from algae) only approved in China. Improvements to the approved therapies, such as easier routes of administration and reduced dosing frequencies, along with the developments of new strategies and combined treatments are expected to occur within the next decade and will positively impact the way the disease is managed. Recently, Aducanumab, the first disease-modifying therapy (DMT) has been approved for AD, and several DMTs are in advanced stages of clinical development or regulatory review. Small molecules, mAbs, or multimodal strategies showing promise in animal studies have not confirmed that promise in the clinic (where small to moderate changes in clinical efficacy have been observed), and therefore, there is a significant unmet need for a better understanding of the AD pathogenesis and the exploration of alternative etiologies and therapeutic effective disease-modifying therapies strategies for AD. Therefore, a critical review of the disease-modifying therapy pipeline for Alzheimer's disease is needed.


Subject(s)
Alzheimer Disease , Alzheimer Disease/drug therapy , Alzheimer Disease/pathology , Amyloid beta-Peptides , Animals , Donepezil , Humans , Memantine/therapeutic use , Patient-Centered Care , Polypharmacology
17.
Int J Mol Sci ; 23(13)2022 Jun 21.
Article in English | MEDLINE | ID: mdl-35805894

ABSTRACT

BACKGROUND: Clinical diagnosis of Alzheimer's disease (AD) increasingly incorporates CSF biomarkers. However, due to the intrinsic variability of the immunodetection techniques used to measure these biomarkers, establishing in-house cutoffs defining the positivity/negativity of CSF biomarkers is recommended. However, the cutoffs currently published are usually reported by using cross-sectional datasets, not providing evidence about its intrinsic prognostic value when applied to real-world memory clinic cases. METHODS: We quantified CSF Aß1-42, Aß1-40, t-Tau, and p181Tau with standard INNOTEST® ELISA and Lumipulse G® chemiluminescence enzyme immunoassay (CLEIA) performed on the automated Lumipulse G600II. Determination of cutoffs included patients clinically diagnosed with probable Alzheimer's disease (AD, n = 37) and subjective cognitive decline subjects (SCD, n = 45), cognitively stable for 3 years and with no evidence of brain amyloidosis in 18F-Florbetaben-labeled positron emission tomography (FBB-PET). To compare both methods, a subset of samples for Aß1-42 (n = 519), t-Tau (n = 399), p181Tau (n = 77), and Aß1-40 (n = 44) was analyzed. Kappa agreement of single biomarkers and Aß1-42/Aß1-40 was evaluated in an independent group of mild cognitive impairment (MCI) and dementia patients (n = 68). Next, established cutoffs were applied to a large real-world cohort of MCI subjects with follow-up data available (n = 647). RESULTS: Cutoff values of Aß1-42 and t-Tau were higher for CLEIA than for ELISA and similar for p181Tau. Spearman coefficients ranged between 0.81 for Aß1-40 and 0.96 for p181TAU. Passing-Bablok analysis showed a systematic and proportional difference for all biomarkers but only systematic for Aß1-40. Bland-Altman analysis showed an average difference between methods in favor of CLEIA. Kappa agreement for single biomarkers was good but lower for the Aß1-42/Aß1-40 ratio. Using the calculated cutoffs, we were able to stratify MCI subjects into four AT(N) categories. Kaplan-Meier analyses of AT(N) categories demonstrated gradual and differential dementia conversion rates (p = 9.815-27). Multivariate Cox proportional hazard models corroborated these findings, demonstrating that the proposed AT(N) classifier has prognostic value. AT(N) categories are only modestly influenced by other known factors associated with disease progression. CONCLUSIONS: We established CLEIA and ELISA internal cutoffs to discriminate AD patients from amyloid-negative SCD individuals. The results obtained by both methods are not interchangeable but show good agreement. CLEIA is a good and faster alternative to manual ELISA for providing AT(N) classification of our patients. AT(N) categories have an impact on disease progression. AT(N) classifiers increase the certainty of the MCI prognosis, which can be instrumental in managing real-world MCI subjects.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Alzheimer Disease/diagnosis , Alzheimer Disease/psychology , Amyloid beta-Peptides , Biomarkers , Cognitive Dysfunction/diagnosis , Cognitive Dysfunction/psychology , Cross-Sectional Studies , Disease Progression , Humans , Peptide Fragments , tau Proteins
18.
Neuropathol Appl Neurobiol ; 47(4): 579-582, 2021 06.
Article in English | MEDLINE | ID: mdl-33095930

ABSTRACT

We present the clinical and neuropathological findings of a patient with early onset Alzheimer's dementia (AD), heterozygous carrier of the rare Apolipoprotein E Christchurch (APOEch) variant. The patient did not harbor any pathogenic mutation in known Mendelian genes related to AD or other neurodegenerative disorders. A sibling of this patient, also carrying the APOEch variant, developed AD at the age of 66 years old. Our data suggest a possible deleterious effect of this variant, which contrast with the protective role that has been previously shown in a subject homozygous for the APOEch with he Paisa PSEN1 mutation.


Subject(s)
Alzheimer Disease/genetics , Alzheimer Disease/pathology , Apolipoproteins E/genetics , Aged , Brain/pathology , Heterozygote , Humans , Male , Mutation , Pedigree
19.
J Nanobiotechnology ; 19(1): 122, 2021 Apr 29.
Article in English | MEDLINE | ID: mdl-33926475

ABSTRACT

Increasing life expectancy has led to an aging population, which has consequently increased the prevalence of dementia. Alzheimer's disease (AD), the most common form of dementia worldwide, is estimated to make up 50-80% of all cases. AD cases are expected to reach 131 million by 2050, and this increasing prevalence will critically burden economies and health systems in the next decades. There is currently no treatment that can stop or reverse disease progression. In addition, the late diagnosis of AD constitutes a major obstacle to effective disease management. Therefore, improved diagnostic tools and new treatments for AD are urgently needed. In this review, we investigate and describe both well-established and recently discovered AD biomarkers that could potentially be used to detect AD at early stages and allow the monitoring of disease progression. Proteins such as NfL, MMPs, p-tau217, YKL-40, SNAP-25, VCAM-1, and Ng / BACE are some of the most promising biomarkers because of their successful use as diagnostic tools. In addition, we explore the most recent molecular strategies for an AD therapeutic approach and nanomedicine-based technologies, used to both target drugs to the brain and serve as devices for tracking disease progression diagnostic biomarkers. State-of-the-art nanoparticles, such as polymeric, lipid, and metal-based, are being widely investigated for their potential to improve the effectiveness of both conventional drugs and novel compounds for treating AD. The most recent studies on these nanodevices are deeply explained and discussed in this review.


Subject(s)
Alzheimer Disease/diagnosis , Alzheimer Disease/drug therapy , Biomarkers/metabolism , Nanomedicine/methods , Aging , Alzheimer Disease/cerebrospinal fluid , Amyloid beta-Peptides , Animals , Brain , Drug Delivery Systems , Humans , Metal Nanoparticles , Oxidative Stress
20.
BMC Plant Biol ; 20(1): 6, 2020 Jan 06.
Article in English | MEDLINE | ID: mdl-31906864

ABSTRACT

BACKGROUND: Efficient organogenesis induction in eggplant (Solanum melongena L.) is required for multiple in vitro culture applications. In this work, we aimed at developing a universal protocol for efficient in vitro regeneration of eggplant mainly based on the use of zeatin riboside (ZR). We evaluated the effect of seven combinations of ZR with indoleacetic acid (IAA) for organogenic regeneration in five genetically diverse S. melongena and one S. insanum L. accessions using two photoperiod conditions. In addition, the effect of six different concentrations of indolebutyric acid (IBA) in order to promote rooting was assessed to facilitate subsequent acclimatization of plants. The ploidy level of regenerated plants was studied. RESULTS: In a first experiment with accessions MEL1 and MEL3, significant (p < 0.05) differences were observed for the four factors evaluated for organogenesis from cotyledon, hypocotyl and leaf explants, with the best results obtained (9 and 11 shoots for MEL1 and MEL3, respectively) using cotyledon tissue, 16 h light / 8 h dark photoperiod conditions, and medium E6 (2 mg/L of ZR and 0 mg/L of IAA). The best combination of conditions was tested in the other four accessions and confirmed its high regeneration efficiency per explant when using both cotyledon and hypocotyl tissues. The best rooting media was R2 (1 mg/L IBA). The analysis of ploidy level revealed that between 25 and 50% of the regenerated plantlets were tetraploid. CONCLUSIONS: An efficient protocol for organogenesis of both cultivated and wild accessions of eggplant, based on the use of ZR, is proposed. The universal protocol developed may be useful for fostering in vitro culture applications in eggplant requiring regeneration of plants and, in addition, allows developing tetraploid plants without the need of antimitotic chemicals.


Subject(s)
Isopentenyladenosine/analogs & derivatives , Organogenesis, Plant/physiology , Solanum melongena/growth & development , Cotyledon/drug effects , Cotyledon/growth & development , Hypocotyl/drug effects , Hypocotyl/growth & development , In Vitro Techniques , Indoleacetic Acids/pharmacology , Isopentenyladenosine/pharmacology , Organogenesis, Plant/drug effects , Plant Growth Regulators/pharmacology , Plant Leaves/drug effects , Plant Leaves/growth & development , Plant Shoots/drug effects , Plant Shoots/growth & development , Ploidies , Regeneration/drug effects , Solanum melongena/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL