Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 181
Filter
1.
Inorg Chem ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38976861

ABSTRACT

Spin energetics is one of the biggest challenges associated with energy calculations for electronic structure methods. The energy differences of the spin states in spin-crossover compounds are very small, making them one of the most difficult systems to calculate. Few methods provide accurate results for calculating these energy differences. In addition, studies have usually focused on calculating energetics of single molecules, while spin-crossover properties are usually experimentally studied in the solid phase. In this paper, we have used periodic boundary conditions employing methods based on density functional theory to calculate the high- and low-spin energy differences for a test case of 20 extended systems. Compounds with different metals and ligands have been selected, and the results indicate that a semiquantitative description of the energy differences can be obtained with the combination of geometry optimization using the PBE functional including many-body dispersion approach and the use of meta-GGA functionals, such as r2SCAN but especially KTBM24, for the energy calculation. Other hybrid functionals, such as TPSSh, give generally good results, but the calculation of the exact exchange with periodic boundary conditions involves a huge increase in computer time and computational resources. It makes the proposed nonhybrid functional approach (KTBM24//PBE+MB) a great advantage for the study of periodic systems.

2.
Inorg Chem ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38934463

ABSTRACT

The impact that the anion and alkyl group has on the electronic structures and magnetic properties of four mononuclear Mn(III) complexes is explored in [Mn(salEen-Br)2]Y (salEen-Br = 2-{[2-(ethylamino)ethylimino]methyl}-4-Br-phenol; Y = ClO4- 1 and BF4-·1/3CH2Cl2 2) and [Mn(salBzen-Br)2]Y (salBzen-Br = 2-{[2-(benzylamino)ethylimino]methyl}-4-Br-phenol; Y = ClO4- 3 and BF4- 4). X-ray structures of [Mn(salEen-Br)2]ClO4·0.45C6H14 1-hexane, [Mn(salEen-Br)2]BF4·0.33CH2Cl2·0.15C6H14 2-dcm-hexane, and 3-4 reveal that they crystallize in ambient conditions in the monoclinic P21/c space group. Lowering the temperature, 2-dcm-hexane uniquely exhibits a structural phase transition toward a monoclinic P21/n crystal structure determined at 100 K with the unit cell trebling in size. Remarkably, at room temperature, the axially elongated Jahn-Teller axis in 2-dcm-hexane is poorly defined but becomes clearer at low temperature after the phase transition. Magnetic susceptibility measurements of 1-4 reveal that only 3 and 4 show slow relaxation of magnetization with Δeff/kB = 27.9 and 20.7 K, implying that the benzyl group is important for observing single-molecule magnet (SMM) properties. Theoretical calculations demonstrate that the alkyl group subtly influences the orbital levels and therefore very likely the observed SMM properties.

3.
Angew Chem Int Ed Engl ; 63(2): e202303146, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-37539652

ABSTRACT

The synthesis of single-molecule magnets (SMMs), magnetic complexes capable of retaining magnetization blocking for a long time at elevated temperatures, has been a major concern for magnetochemists over the last three decades. In this review, we describe basic SMMs and the different approaches that allow high magnetization-blocking temperatures to be reached. We focus on the basic factors affecting magnetization blocking, magnetic axiality and the height of the blocking barrier, which can be used to group different families of complexes in terms of their SMM efficiency. Finally, we discuss several practical routes for the design of mono- and polynuclear complexes that could be applied in memory devices.

4.
Inorg Chem ; 62(17): 6642-6648, 2023 May 01.
Article in English | MEDLINE | ID: mdl-37068219

ABSTRACT

The synthesis, structural, and magnetic characterization of [FeIII4LnIII4(teaH)8(N3)8(H2O)] (Ln = Gd and Y) and the previously reported isostructural Dy analogue are discussed. The commonly held belief that both FeIII and GdIII can be regarded as isotropic ions is shown to be an oversimplification. This conclusion is derived from the magnetic data for the YIII analogue in terms of the zero-field splitting seen for FeIII and from the fact that the magnetic data for the new GdIII analogue can only be fit employing an additional anisotropy term for the GdIII ions. Furthermore, the Fe4Gd4 ring shows slow relaxation of magnetization. Our analysis of the experimental magnetic data employs both density functional theory as well as the finite-temperature Lanczos method which finally enables us to provide an almost perfect fit of magnetocaloric properties.

5.
J Am Chem Soc ; 144(32): 14888-14896, 2022 Aug 17.
Article in English | MEDLINE | ID: mdl-35918175

ABSTRACT

Metal-organic frameworks (MOFs) provide versatile platforms to construct multi-responsive materials. Herein, by introducing the neutral tetradentate ligand and the linear dicyanoaurate(I) anion, we reported a rare cationic MOF [FeII(TPB){AuI(CN)2}]I·4H2O·4DMF (TPB = 1,2,4,5-tetra(pyridin-4-yl)benzene) with hysteretic spin-crossover (SCO) behavior near room temperature. This hybrid framework with an open metal site (AuI) exhibits redox-programmable capability toward dihalogen molecules. By means of post-synthetic modification, all the linear [AuI(CN)2]- linkers can be oxidized to square planar [AuIII(CN)2X2]- units, which results in the hysteretic SCO behaviors switching from one-step to two-step for Br2 and three-step for I2. More importantly, the stepwise SCO behaviors can go back to one-step via the reduction by l-ascorbic acid (AA). Periodic DFT calculations using various SCAN-type exchange-correlation functionals have been employed to rationalize the experimental data. Hence, these results demonstrate for the first time that switchable one-/two-/three-stepped SCO dynamics can be manipulated by chemical redox reactions, which opens a new perspective for multi-responsive molecular switches.

6.
Inorg Chem ; 61(29): 11124-11136, 2022 Jul 25.
Article in English | MEDLINE | ID: mdl-35815859

ABSTRACT

Four novel CeIII mononuclear complexes of formulas [Ce(ntfa)3(MeOH)2] (1), [Ce(ntfa)3(5,5'-Me2bipy)] (2), [Ce(ntfa)3(terpy)] (3), and [Ce(ntfa)3(bipy)2] (4), where ntfa = 4,4,4-trifluoro-1-(naphthalen-2-yl)butane-1,3-dionato, 5,5'-Me2bipy = 5,5'-dimethyl-2,2'-dipyridyl, terpy = 2,2':6',2″-terpyridine, and bipy = 2,2'-bipyridine, have been synthesized and structurally characterized with CeIII displaying coordination numbers of 8, 8, 9, and 10, respectively. Magnetic measurements indicate that all the complexes show a field-induced single-ion magnet behavior under a small applied dc field. The magnetic analysis shows the relevance of the different spin relaxation mechanisms in the magnetic relaxation of the CeIII compounds, with special emphasis on the local-mode process. Multiconfigurational calculations were also performed to get more information on the axiality of the compounds.

7.
Inorg Chem ; 61(26): 9946-9959, 2022 Jul 04.
Article in English | MEDLINE | ID: mdl-35737854

ABSTRACT

A new synthetic method allows isolating fluoride-bridged complexes Bu4N{[M(3NO2,5Br-H3L1,1,4)]2(µ-F)} (M = Dy, 1; M = Ho, 2; M = Gd, 3) and Bu4N{[Dy(3Br,5Cl-H3L1,2,4)]2(µ-F)}·2H2O, 4·2H2O. The crystal structures of 1·5CH3C6H5,·2·2H2O·0.75THF, 3, and 4·2H2O·2THF show that all of them are dinuclear compounds with linear single fluoride bridges and octacoordinated metal centers. Magnetic susceptibility measurements in the temperature range of 2-300 K reveal that the GdIII ions in 3 are weakly antiferromagnetically coupled, and this constitutes the first crystallographically and magnetically analyzed gadolinium complex with a fluoride bridge. Variable-temperature magnetization demonstrates a poor magnetocaloric effect for 3. Alternating current magnetic measurements for 1, 2, and 4·2H2O bring to light that 4·2H2O is an SMM, 1 shows an SMM-like behavior under a magnetic field of 600 Oe, while 2 does not show relaxation of the magnetization even under an applied magnetic field. In spite of this, 2 is the first fluoride-bridged holmium complex magnetically analyzed. DFT and ab initio calculations support the experimental magnetic results and show that apparently small structural differences between 1 and 4·2H2O introduce important changes in the dipolar interactions, from antiferromagnetic in 1 to ferromagnetic in 4·2H2O.

8.
Chemistry ; 27(66): 16440-16447, 2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34582589

ABSTRACT

We report the spin dynamic properties of non-substituted ferrocenium complexes. Ferrocenium shows a field-induced single-molecule magnet behaviour in DMF solution while cobaltocene lacks slow spin relaxation neither in powder nor in solution. Multireference quantum mechanical calculations give a non-Aufbau orbital occupation for ferrocenium with small first excitation energy that agrees with the relatively large measured magnetic anisotropy for a transition metal S=1/2 system. The analysis of the spin relaxation shows an important participation of quantum tunnelling, Raman, direct and local-mode mechanisms which depend on temperature and the external field conditions. The calculation of spin-phonon coupling constants for the vibrational modes shows that the first vibrational mode, despite having a low spin-phonon constant, is the most efficient process for the spin relaxation at low temperatures. In such conditions, vibrational modes with higher spin-phonon coupling constants are not populated. Additionally, the vibrational energy of this first mode is in excellent agreement with the experimental fitted value obtained from the local-mode mechanism.

9.
Chemistry ; 27(21): 6569-6578, 2021 Apr 12.
Article in English | MEDLINE | ID: mdl-33469945

ABSTRACT

This contribution focuses on complex [Mo2 (H)2 (µ-AdDipp2 )2 ] (1) and tetrahydrofuran and pyridine adducts [Mo2 (H)2 (µ-AdDipp2 )2 (L)2 ] (1⋅thf and 1⋅py), which contain a trans-(H)Mo≣Mo(H) core (AdDipp2 =HC(NDipp2 )2 ; Dipp=2,6-iPr2 C6 H3 ). Computational studies provide insights into the coordination and electronic characteristics of the central trans-Mo2 H2 unit of 1, with four-coordinate, fourteen-electron Mo atoms and ϵ-agostic interactions with Dipp methyl groups. Small size C- and N-donors give rise to related complexes 1⋅L but only one molecule of P-donors, for example, PMe3 , can bind to 1, causing one of the hydrides to form a three-centered, two-electron (3c-2e) Mo-H→Mo bond (2⋅PMe3 ). A DFT analysis of the terminal and bridging hydride coordination to the Mo≣Mo bond is also reported, along with reactivity studies of the Mo-H bonds of these complexes. Reactions investigated include oxidation of 1⋅thf by silver triflimidate, AgNTf2 , to afford a monohydride [Mo2 (µ-H)(µ-NTf2 )(µ-AdDipp2 )2 ] (4), with an O,O'-bridging triflimidate ligand.

10.
Inorg Chem ; 60(2): 570-573, 2021 Jan 18.
Article in English | MEDLINE | ID: mdl-33356201

ABSTRACT

A metalloorganic capsule was synthesized where the ligand is a derivative of heptazine with three carboxylic groups that are coordinated to CuII cations, forming paddle-wheel motifs. Each nanocapsule is neutral, with 12 CuII centers and 8 ligands adopting a rhombicuboctahedron shape. It has almost 3 nm diameter, and the main intermolecular interactions in the solid are π··· π stacking between the C6N7 heptazine moieties. The nanocapsules can form monolayers deposited on graphite as observed by atomic force microscopy, which confirms their stability in solution.

11.
Phys Chem Chem Phys ; 23(3): 1976-1983, 2021 Jan 28.
Article in English | MEDLINE | ID: mdl-33433544

ABSTRACT

The magnetic properties of mononuclear YbIII complexes have been explored by using multiconfigurational CASPT2/RASSI calculations. Such complexes, in particular the case of [Yb(trensal)] complex, have been proposed as molecular qubits due to their spin dynamics properties. We have verified the accuracy of the theoretical approach to study such systems by comparing with experimental magnetic data. In order to have a wide overview of the magnetic properties of mononuclear YbIII complexes, we have considered simple charged and neutral models, [Yb(H2O)n]3+ and [Yb(OH)3(H2O)n-3], for many coordination modes. Thus, the results for more than 100 models allow extraction of some conclusions about the best ligand distributions in the coordination sphere to tailor the magnetic properties. Some low coordination, between 3 and 5, complexes that have no experimental magnetic data have been studied computationally to check if they can present high magnetic anisotropy.

12.
Angew Chem Int Ed Engl ; 60(49): 25958-25965, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34726815

ABSTRACT

Here we present room-temperature spin-dependent charge transport measurements in single-molecule junctions made of metalloporphyrin-based supramolecular assemblies. They display large conductance switching for magnetoresistance in a single-molecule junction. The magnetoresistance depends acutely on the probed electron pathway through the supramolecular wire: those involving the metal center showed marked magnetoresistance effects as opposed to those exclusively involving the porphyrin ring which present nearly complete absence of spin-dependent charge transport. The molecular junction magnetoresistance is highly anisotropic, being observable when the magnetization of the ferromagnetic junction electrode is oriented along the main molecular junction axis, and almost suppressed when it is perpendicular. The key ingredients for the above effect to manifest are the electronic structure of the paramagnetic metalloporphyrin, and the spinterface created at the molecule-electrode contact.

13.
Chemistry ; 26(35): 7847-7860, 2020 Jun 23.
Article in English | MEDLINE | ID: mdl-32142594

ABSTRACT

A series of dodecanuclear highly positively charged homo- and heterometallamacrocycles [{Pd(η3 -2-Me-C3 H4 )}6 (4-PPh2 py)12 {M2 (tpbz)}3 ]18+ (M=Pd, Pt; tpbz=1,2,4,5-tetrakis(diphenylphosphanyl)benzene were synthesized by the quantitative self-assembly of {Pd(η3 -2-Me-C3 H4 )}+ , {M2 (tpbz)}4+ and 4-PPh2 py moieties in 2:1:4 molar ratio. The cationic assemblies were obtained as salts of different fluorinated anions with diverse sizes and electronic properties, namely BF4 - , PF6 - , SbF6 - and CF3 SO3 - . The new crown-like metallamacrocycles showed remarkable differences in their NMR spectra due to the presence of the different counteranions. On the basis of the observed variations, the metallacycles have been tested as catalytic precursors in allylic alkylation reactions. The anion-dependent activity and selectivity has been analysed and compared with that of the corresponding monometallic allylic corners [Pd(η3 -2-Me-C3 H4 )(4-PPh2 py)2 ]X (X=BF4 - , PF6 - , SbF6 - , CF3 SO3 - ). DFT calculations have been employed in order to help to the interpretation of the experimental data and to model the anion-crown interactions.

14.
Inorg Chem ; 59(13): 9261-9269, 2020 Jul 06.
Article in English | MEDLINE | ID: mdl-32543836

ABSTRACT

Tetraphenylphosphonium salts of Co and Fe complexes with alkyl-substituted, tert-butyl (tb), and isopropyl (dp) 2,3-thiophenedithiolate (α-tpdt) ligands, namely, TPP[Co(α-tb-tpdt)2] (3), TPP2[Fe(α-tb-tpdt)2]2 (4a-b), TPP[Co(α-dp-tpdt)2] (5), and TPP[Fe(α-dp-tpdt)2] (6) were prepared and characterized by cyclic voltammetry, single crystal X-ray diffraction, magnetic susceptibility measurements, and 57Fe Mössbauer spectroscopy. Compound 3 and 5 are isostructural with their Au and Ni analogues with a square-planar coordination geometry. Compound 4 presents two polymorphs (4a-b) both showing a Fe(III) bisdithiolene dimerization. The magnetic susceptibility of 3 and 5 exhibits behavior dominated by antiferromagnetic interactions, with room-temperature magnetic moments of 3.40 and 3.36 µB, respectively, indicating that these square-planar Co(III) complexes assume an intermediate spin electronic configuration (S = 1) as supported by multiconfigurational and DFT calculations.

15.
J Phys Chem A ; 124(24): 5053-5058, 2020 Jun 18.
Article in English | MEDLINE | ID: mdl-32449616

ABSTRACT

The strongly constrained and appropriately normed (SCAN) functional has been tested toward the calculation of spin-state energy differences in a data set of 20 spin-crossover (SCO) systems, ranging from d4 to d7. Results show that the SCAN functional is able to correctly predict the low-spin state as the ground state for all systems, and the energy window provided by the calculations falls in the approximate range of energies that will allow for SCO to occur. Moreover, the SCAN functional can be used in periodic boundary condition calculations, accounting for the effect of collective crystal vibrations and counterions in the thermochemistry of the spin transition. Our results validate this functional as a potential method for in silico screening of new SCO systems at both, molecular and crystal-packed levels.

16.
Angew Chem Int Ed Engl ; 59(43): 19193-19201, 2020 10 19.
Article in English | MEDLINE | ID: mdl-33448538

ABSTRACT

Nature has developed supramolecular constructs to deliver outstanding charge-transport capabilities using metalloporphyrin-based supramolecular arrays. Herein we incorporate simple, naturally inspired supramolecular interactions via the axial complexation of metalloporphyrins into the formation of a single-molecule wire in a nanoscale gap. Small structural changes in the axial coordinating linkers result in dramatic changes in the transport properties of the metalloporphyrin-based wire. The increased flexibility of a pyridine-4-yl-methanethiol ligand due to an extra methyl group, as compared to a more rigid 4-pyridinethiol linker, allows the pyridine-4-yl-methanethiol ligand to adopt an unexpected highly conductive stacked structure between the two junction electrodes and the metalloporphyrin ring. DFT calculations reveal a molecular junction structure composed of a shifted stack of the two pyridinic linkers and the metalloporphyrin ring. In contrast, the more rigid 4-mercaptopyridine ligand presents a more classical lifted octahedral coordination of the metalloporphyrin metal center, leading to a longer electron pathway of lower conductance. This works opens to supramolecular electronics, a concept already exploited in natural organisms.

17.
J Am Chem Soc ; 141(1): 240-250, 2019 Jan 09.
Article in English | MEDLINE | ID: mdl-30516985

ABSTRACT

This paper reports highly efficient coherent tunneling in single-molecule wires of oligo-ferrocenes with one to three Fc units. The Fc units were directly coupled to the electrodes, i.e., without chemical anchoring groups between the Fc units and the terminal electrodes. We found that a single Fc unit readily interacts with the metal electrodes of an STM break junction (STM = scanning tunneling microscope) and that the zero-voltage bias conductance of an individual Fc molecular junction increased 5-fold, up to 80% of the conductance quantum G0 (77.4 µS), when the length of the molecular wire was increased from one to three connected Fc units. Our compendium of experimental evidence combined with nonequilibrium Green function calculations contemplate a plausible scenario to explain the exceedingly high measured conductance based on the electrode/molecule contact via multiple Fc units. The oligo-Fc backbone is initially connected through all Fc units, and, as one of the junction electrodes is pulled away, each Fc unit is sequentially disconnected from one of the junction terminals, resulting in several distinct conductance features proportional to the number of Fc units in the backbone. The conductance values are independent of the applied temperature (-10 to 85 °C), which indicates that the mechanism of charge transport is coherent tunneling for all measured configurations. These measurements show the direct Fc-electrode coupling provides highly efficient molecular conduits with very low barrier for electron tunneling and whose conductivity can be modulated near the ballistic regime through the number of Fc units able to bridge and the energy position of the frontier molecular orbital.

18.
Chemistry ; 25(45): 10625-10632, 2019 Aug 09.
Article in English | MEDLINE | ID: mdl-31066934

ABSTRACT

The single-molecule magnet (SMM) properties of a series of ferrocenium complexes, [Fe(η5 -C5 R5 )2 ]+ (R=Me, Bn), are reported. In the presence of an applied dc field, the slow dynamics of the magnetization in [Fe(η5 -C5 Me5 )2 ]BArF are revealed. Multireference quantum mechanical calculations show a large energy difference between the ground and first excited states, excluding the commonly invoked, thermally activated (Orbach-like) mechanism of relaxation. In contrast, a detailed analysis of the relaxation time highlights that both direct and Raman processes are responsible for the SMM properties. Similarly, the bulky ferrocenium complexes, [Fe(η5 -C5 Bn5 )2 ]BF4 and [Fe(η5 -C5 Bn5 )2 ]PF6 , also exhibit magnetization slow dynamics, however an additional relaxation process is clearly detected for these analogous systems.

19.
Angew Chem Int Ed Engl ; 58(44): 15650-15654, 2019 Oct 28.
Article in English | MEDLINE | ID: mdl-31290580

ABSTRACT

The first structurally characterized hexafluorido complex of a tetravalent actinide ion, the [UF6 ]2- anion, is reported in the (NEt4 )2 [UF6 ]⋅2 H2 O salt (1). The weak magnetic response of 1 results from both UIV spin and orbital contributions, as established by combining X-ray magnetic circular dichroism (XMCD) spectroscopy and bulk magnetization measurements. The spin and orbital moments are virtually identical in magnitude, but opposite in sign, resulting in an almost perfect cancellation, which is corroborated by ab initio calculations. This work constitutes the first experimental demonstration of a seemingly non-magnetic molecular actinide complex carrying sizable spin and orbital magnetic moments.

20.
Chemistry ; 24(35): 8857-8868, 2018 Jun 21.
Article in English | MEDLINE | ID: mdl-29655240

ABSTRACT

The homoleptic mononuclear compound [Co(bpp-COOMe)2 ](ClO4 )2  (1) (bpp-COOMe=methyl 2,6-di(pyrazol-1-yl)pyridine-4-carboxylate) crystallizes in the monoclinic C2/c space group, and the cobalt(II) ion possesses a pseudo-octahedral environment given by the two mer-coordinated tridentate ligands. Direct-current magnetic data, single-crystal torque magnetometry, and EPR measurements disclosed the easy-axis nature of this cobalt(II) complex, which shows single-molecule magnet behavior when a static field is applied in alternating-current susceptibility measurements. Diamagnetic dilution in the zinc(II) analogue [Zn(bpp-COOMe)2 ](ClO4 )2  (2) afforded the derivative [Zn0.95 Co0.05 (bpp-COOMe)2 ](ClO4 )2  (3), which exhibits slow relaxation of magnetization even in zero field thanks to the reduction of dipolar interactions. Theoretical calculations confirmed the overall electronic structure and the magnetic scenario of the compound as drawn by experimental data, thus confirming the spin-phonon Raman relaxation mechanism, and a direct quantum tunneling in the ground state as the most plausible relaxation pathway in zero field.

SELECTION OF CITATIONS
SEARCH DETAIL