Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.980
Filter
1.
Annu Rev Biochem ; 90: 659-679, 2021 06 20.
Article in English | MEDLINE | ID: mdl-34153214

ABSTRACT

The polytopic, endoplasmic reticulum (ER) membrane protein 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase produces mevalonate, the key intermediate in the synthesis of cholesterol and many nonsterol isoprenoids including geranylgeranyl pyrophosphate (GGpp). Transcriptional, translational, and posttranslational feedback mechanisms converge on this reductase to ensure cells maintain a sufficient supply of essential nonsterol isoprenoids but avoid overaccumulation of cholesterol and other sterols. The focus of this review is mechanisms for the posttranslational regulation of HMG CoA reductase, which include sterol-accelerated ubiquitination and ER-associated degradation (ERAD) that is augmented by GGpp. We discuss how GGpp-induced ER-to-Golgi trafficking of the vitamin K2 synthetic enzyme UbiA prenyltransferase domain-containing protein-1 (UBIAD1) modulates HMG CoA reductase ERAD to balance the synthesis of sterol and nonsterol isoprenoids. We also summarize the characterization of genetically manipulated mice, which established that sterol-accelerated, UBIAD1-modulated ERAD plays a major role in regulation of HMG CoA reductase and cholesterol metabolism in vivo.


Subject(s)
Cholesterol/biosynthesis , Endoplasmic Reticulum-Associated Degradation/physiology , Hydroxymethylglutaryl CoA Reductases/metabolism , Animals , Dimethylallyltranstransferase/metabolism , Endoplasmic Reticulum-Associated Degradation/drug effects , Humans , Hydroxymethylglutaryl CoA Reductases/chemistry , Hydroxymethylglutaryl CoA Reductases/genetics , Mice , Polyisoprenyl Phosphates/metabolism , Protein Processing, Post-Translational , Sterols/metabolism , Terpenes/metabolism , Terpenes/pharmacology , Ubiquitination
2.
Nature ; 623(7986): 263-273, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37938706

ABSTRACT

Functional magnetic resonance imaging (fMRI) enables non-invasive access to the awake, behaving human brain. By tracking whole-brain signals across a diverse range of cognitive and behavioural states or mapping differences associated with specific traits or clinical conditions, fMRI has advanced our understanding of brain function and its links to both normal and atypical behaviour. Despite this headway, progress in human cognitive neuroscience that uses fMRI has been relatively isolated from rapid advances in other subdomains of neuroscience, which themselves are also somewhat siloed from one another. In this Perspective, we argue that fMRI is well-placed to integrate the diverse subfields of systems, cognitive, computational and clinical neuroscience. We first summarize the strengths and weaknesses of fMRI as an imaging tool, then highlight examples of studies that have successfully used fMRI in each subdomain of neuroscience. We then provide a roadmap for the future advances that will be needed to realize this integrative vision. In this way, we hope to demonstrate how fMRI can help usher in a new era of interdisciplinary coherence in neuroscience.


Subject(s)
Functional Neuroimaging , Magnetic Resonance Imaging , Neurosciences , Humans , Brain/diagnostic imaging , Brain/physiology , Brain/physiopathology , Cognitive Neuroscience/methods , Cognitive Neuroscience/trends , Functional Neuroimaging/trends , Neurosciences/methods , Neurosciences/trends , Phenotype , Magnetic Resonance Imaging/trends
3.
Proc Natl Acad Sci U S A ; 121(7): e2318822121, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38319967

ABSTRACT

The maintenance of cholesterol homeostasis is crucial for normal function at both the cellular and organismal levels. Two integral membrane proteins, 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) and Scap, are key targets of a complex feedback regulatory system that operates to ensure cholesterol homeostasis. HMGCR catalyzes the rate-limiting step in the transformation of the 2-carbon precursor acetate to 27-carbon cholesterol. Scap mediates proteolytic activation of sterol regulatory element-binding protein-2 (SREBP-2), a membrane-bound transcription factor that controls expression of genes involved in the synthesis and uptake of cholesterol. Sterol accumulation triggers binding of HMGCR to endoplasmic reticulum (ER)-localized Insig proteins, leading to the enzyme's ubiquitination and proteasome-mediated ER-associated degradation (ERAD). Sterols also induce binding of Insigs to Scap, which leads to sequestration of Scap and its bound SREBP-2 in the ER, thereby preventing proteolytic activation of SREBP-2 in the Golgi. The oxygenated cholesterol derivative 25-hydroxycholesterol (25HC) and the methylated cholesterol synthesis intermediate 24,25-dihydrolanosterol (DHL) differentially modulate HMGCR and Scap. While both sterols promote binding of HMGCR to Insigs for ubiquitination and subsequent ERAD, only 25HC inhibits the Scap-mediated proteolytic activation of SREBP-2. We showed previously that 1,1-bisphosphonate esters mimic DHL, accelerating ERAD of HMGCR while sparing SREBP-2 activation. Building on these results, our current studies reveal specific, Insig-independent photoaffinity labeling of HMGCR by photoactivatable derivatives of the 1,1-bisphosphonate ester SRP-3042 and 25HC. These findings disclose a direct sterol binding mechanism as the trigger that initiates the HMGCR ERAD pathway, providing valuable insights into the intricate mechanisms that govern cholesterol homeostasis.


Subject(s)
Phytosterols , Sterols , Sterols/metabolism , Endoplasmic Reticulum-Associated Degradation , Sterol Regulatory Element Binding Protein 1/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Cholesterol/metabolism , Hydroxymethylglutaryl CoA Reductases/metabolism , Carbon/metabolism , Diphosphonates
4.
Proc Natl Acad Sci U S A ; 121(3): e2312031121, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38194461

ABSTRACT

The quantification and characterization of aggregated α-synuclein in clinical samples offer immense potential toward diagnosing, treating, and better understanding neurodegenerative synucleinopathies. Here, we developed digital seed amplification assays to detect single α-synuclein aggregates by partitioning the reaction into microcompartments. Using pre-formed α-synuclein fibrils as reaction seeds, we measured aggregate concentrations as low as 4 pg/mL. To improve our sensitivity, we captured aggregates on antibody-coated magnetic beads before running the amplification reaction. By first characterizing the pre-formed fibrils with transmission electron microscopy and size exclusion chromatography, we determined the specific aggregates targeted by each assay platform. Using brain tissue and cerebrospinal fluid samples collected from patients with Parkinson's Disease and multiple system atrophy, we demonstrated that the assay can detect endogenous pathological α-synuclein aggregates. Furthermore, as another application for these assays, we studied the inhibition of α-synuclein aggregation in the presence of small-molecule inhibitors and used a custom image analysis pipeline to quantify changes in aggregate growth and filament morphology.


Subject(s)
Multiple System Atrophy , Parkinson Disease , Synucleinopathies , Humans , alpha-Synuclein , Antibodies
5.
Nat Methods ; 19(12): 1568-1571, 2022 12.
Article in English | MEDLINE | ID: mdl-36456786

ABSTRACT

Reference anatomies of the brain ('templates') and corresponding atlases are the foundation for reporting standardized neuroimaging results. Currently, there is no registry of templates and atlases; therefore, the redistribution of these resources occurs either bundled within existing software or in ad hoc ways such as downloads from institutional sites and general-purpose data repositories. We introduce TemplateFlow as a publicly available framework for human and non-human brain models. The framework combines an open database with software for access, management, and vetting, allowing scientists to share their resources under FAIR-findable, accessible, interoperable, and reusable-principles. TemplateFlow enables multifaceted insights into brains across species, and supports multiverse analyses testing whether results generalize across standard references, scales, and in the long term, species.


Subject(s)
Nervous System Physiological Phenomena , Neuroimaging , Brain , Databases, Factual , Problem Solving
7.
Nat Rev Neurosci ; 21(10): 524-534, 2020 10.
Article in English | MEDLINE | ID: mdl-32879507

ABSTRACT

The first issue of Nature Reviews Neuroscience was published 20 years ago, in 2000. To mark this anniversary, in this Viewpoint article we asked a selection of researchers from across the field who have authored pieces published in the journal in recent years for their thoughts on notable and interesting developments in neuroscience, and particularly in their areas of the field, over the past two decades. They also provide some thoughts on current lines of research and questions that excite them.


Subject(s)
Neurosciences/history , History, 21st Century , Humans
8.
Hum Genomics ; 18(1): 14, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38321488

ABSTRACT

BACKGROUND: Periodic bioinformatics-based screening of wastewater for assessing the diversity of potential human viral pathogens circulating in a given community may help to identify novel or potentially emerging infectious diseases. Any identified contigs related to novel or emerging viruses should be confirmed with targeted wastewater and clinical testing. RESULTS: During the COVID-19 pandemic, untreated wastewater samples were collected for a 1-year period from the Great Lakes Water Authority Wastewater Treatment Facility in Detroit, MI, USA, and viral population diversity from both centralized interceptor sites and localized neighborhood sewersheds was investigated. Clinical cases of the diseases caused by human viruses were tabulated and compared with data from viral wastewater monitoring. In addition to Betacoronavirus, comparison using assembled contigs against a custom Swiss-Prot human virus database indicated the potential prevalence of other pathogenic virus genera, including: Orthopoxvirus, Rhadinovirus, Parapoxvirus, Varicellovirus, Hepatovirus, Simplexvirus, Bocaparvovirus, Molluscipoxvirus, Parechovirus, Roseolovirus, Lymphocryptovirus, Alphavirus, Spumavirus, Lentivirus, Deltaretrovirus, Enterovirus, Kobuvirus, Gammaretrovirus, Cardiovirus, Erythroparvovirus, Salivirus, Rubivirus, Orthohepevirus, Cytomegalovirus, Norovirus, and Mamastrovirus. Four nearly complete genomes were recovered from the Astrovirus, Enterovirus, Norovirus and Betapolyomavirus genera and viral species were identified. CONCLUSIONS: The presented findings in wastewater samples are primarily at the genus level and can serve as a preliminary "screening" tool that may serve as indication to initiate further testing for the confirmation of the presence of species that may be associated with human disease. Integrating innovative environmental microbiology technologies like metagenomic sequencing with viral epidemiology offers a significant opportunity to improve the monitoring of, and predictive intelligence for, pathogenic viruses, using wastewater.


Subject(s)
Enterovirus , Virus Diseases , Viruses , Humans , Wastewater , Michigan , Pandemics
9.
Cell ; 142(2): 270-83, 2010 Jul 23.
Article in English | MEDLINE | ID: mdl-20655468

ABSTRACT

Mechanisms that regulate cellular metabolism are a fundamental requirement of all cells. Most eukaryotic cells rely on aerobic mitochondrial metabolism to generate ATP. Nevertheless, regulation of mitochondrial activity is incompletely understood. Here we identified an unexpected and essential role for constitutive InsP(3)R-mediated Ca(2+) release in maintaining cellular bioenergetics. Macroautophagy provides eukaryotes with an adaptive response to nutrient deprivation that prolongs survival. Constitutive InsP(3)R Ca(2+) signaling is required for macroautophagy suppression in cells in nutrient-replete media. In its absence, cells become metabolically compromised due to diminished mitochondrial Ca(2+) uptake. Mitochondrial uptake of InsP(3)R-released Ca(2+) is fundamentally required to provide optimal bioenergetics by providing sufficient reducing equivalents to support oxidative phosphorylation. Absence of this Ca(2+) transfer results in enhanced phosphorylation of pyruvate dehydrogenase and activation of AMPK, which activates prosurvival macroautophagy. Thus, constitutive InsP(3)R Ca(2+) release to mitochondria is an essential cellular process that is required for efficient mitochondrial respiration and maintenance of normal cell bioenergetics.


Subject(s)
B-Lymphocytes/metabolism , Calcium Signaling , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Mitochondria/metabolism , Oxidative Phosphorylation , Animals , Autophagy , Calcium/metabolism , Cell Line , Chickens , Gene Knockout Techniques
10.
J Mol Cell Cardiol ; 186: 16-30, 2024 01.
Article in English | MEDLINE | ID: mdl-37935281

ABSTRACT

Epicardial-derived cells (EPDCs) are involved in the regulation of myocardial growth and coronary vascularization and are critically important for proper development of the atrioventricular (AV) valves. SOX9 is a transcription factor expressed in a variety of epithelial and mesenchymal cells in the developing heart, including EPDCs. To determine the role of SOX9 in epicardial development, an epicardial-specific Sox9 knockout mouse model was generated. Deleting Sox9 from the epicardial cell lineage impairs the ability of EPDCs to invade both the ventricular myocardium and the developing AV valves. After birth, the mitral valves of these mice become myxomatous with associated abnormalities in extracellular matrix organization. This phenotype is reminiscent of that seen in humans with myxomatous mitral valve disease (MVD). An RNA-seq analysis was conducted in an effort to identify genes associated with this myxomatous degeneration. From this experiment, Cd109 was identified as a gene associated with myxomatous valve pathogenesis in this model. Cd109 has never been described in the context of heart development or valve disease. This study highlights the importance of SOX9 in the regulation of epicardial cell invasion-emphasizing the importance of EPDCs in regulating AV valve development and homeostasis-and reports a novel expression profile of Cd109, a gene with previously unknown relevance in heart development.


Subject(s)
Heart Valve Diseases , Mitral Valve , Humans , Mice , Animals , Mitral Valve/metabolism , Heart Valve Diseases/pathology , Heart Ventricles/metabolism , Myocardium/metabolism , Mice, Knockout , Transcription Factors/metabolism
11.
J Biol Chem ; 299(12): 105447, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37949223

ABSTRACT

The post-translational modification of intracellular proteins by O-linked ß-GlcNAc (O-GlcNAc) has emerged as a critical regulator of cardiac function. Enhanced O-GlcNAcylation activates cytoprotective pathways in cardiac models of ischemia-reperfusion (I/R) injury; however, the mechanisms underpinning O-GlcNAc cycling in response to I/R injury have not been comprehensively assessed. The cycling of O-GlcNAc is regulated by the collective efforts of two enzymes: O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), which catalyze the addition and hydrolysis of O-GlcNAc, respectively. It has previously been shown that baseline heart physiology and pathophysiology are impacted by sex. Here, we hypothesized that sex differences in molecular signaling may target protein O-GlcNAcylation both basally and in ischemic hearts. To address this question, we subjected male and female WT murine hearts to ex vivo ischemia or I/R injury. We assessed hearts for protein O-GlcNAcylation, abundance of OGT, OGA, and glutamine:fructose-6-phosphate aminotransferase (GFAT2), activity of OGT and OGA, and UDP-GlcNAc levels. Our data demonstrate elevated O-GlcNAcylation in female hearts both basally and during ischemia. We show that OGT activity was enhanced in female hearts in all treatments, suggesting a mechanism for these observations. Furthermore, we found that ischemia led to reduced O-GlcNAcylation and OGT-specific activity. Our findings provide a foundation for understanding molecular mechanisms that regulate O-GlcNAcylation in the heart and highlight the importance of sex as a significant factor when assessing key regulatory events that control O-GlcNAc cycling. These data suggest the intriguing possibility that elevated O-GlcNAcylation in females contributes to reduced ischemic susceptibility.


Subject(s)
Acetylglucosamine , Heart , Myocardium , N-Acetylglucosaminyltransferases , Sex Characteristics , Signal Transduction , Animals , Female , Male , Mice , Acetylglucosamine/metabolism , Heart/physiology , Ischemia/enzymology , Ischemia/metabolism , Myocardium/enzymology , Myocardium/metabolism , N-Acetylglucosaminyltransferases/metabolism , Protein Processing, Post-Translational
12.
Neurobiol Dis ; 191: 106407, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38199272

ABSTRACT

Spreading depolarizations (SDs) are profound waves of neuroglial depolarization that can propagate repetitively through injured brain. Recent clinical work has established SD as an important contributor to expansion of acute brain injuries and have begun to extend SD studies into other neurological disorders. A critical challenge is to determine how to selectively prevent deleterious consequences of SD. In the present study, we determined whether a wave of profound Zn2+ release is a key contributor to deleterious consequences of SD, and whether this can be targeted pharmacologically. Focal KCl microinjection was used to initiate SD in the CA1 region of the hippocampus in murine brain slices. An extracellular Zn2+ chelator with rapid kinetics (ZX1) increased SD propagation rates and improved recovery of extracellular DC potential shifts. Under conditions of metabolic compromise, tissues showed sustained impairment of functional and structural recovery following a single SD. ZX1 effectively improved recovery of synaptic potentials and intrinsic optical signals in these vulnerable conditions. Fluorescence imaging and genetic deletion of a presynaptic Zn2+ transporter confirmed synaptic release as the primary contributor to extracellular accumulation and deleterious consequences of Zn2+ during SD. These results demonstrate a role for synaptic Zn2+ release in deleterious consequences of SD and show that targeted extracellular chelation could be useful for disorders where repetitive SD enlarges infarcts in injured tissues.


Subject(s)
Cortical Spreading Depression , Hippocampus , Mice , Animals , Hippocampus/metabolism , Membrane Transport Proteins , Chelating Agents , Neuroglia/metabolism , Zinc/metabolism
13.
Clin Immunol ; 264: 110259, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38768856

ABSTRACT

The gluten-free diet for celiac disease (CeD) is restrictive and often fails to induce complete symptom and/or mucosal disease remission. Central to CeD pathogenesis is the gluten-specific CD4+ T cell that is restricted by HLA-DQ2.5 in over 85% of CeD patients, making HLA-DQ2.5 an attractive target for suppressing gluten-dependent immunity. Recently, a novel anti-HLA-DQ2.5 antibody that specifically recognizes the complexes of HLA-DQ2.5 and multiple gluten epitopes was developed (DONQ52). OBJECTIVE: To assess the ability of DONQ52 to inhibit CeD patient-derived T-cell responses to the most immunogenic gluten peptides that encompass immunodominant T cell epitopes. METHODS: We employed an in vivo gluten challenge model in patients with CeD that affords a quantitative readout of disease-relevant gluten-specific T-cell responses. HLA-DQ2.5+ CeD patients consumed food containing wheat, barley, or rye for 3 days with collection of blood before (D1) and 6 days after (D6) commencing the challenge. Peripheral blood mononuclear cells were isolated and assessed in an interferon (IFN)-γ enzyme-linked immunosorbent spot assay (ELISpot) testing responses to gluten peptides encompassing a series of immunodominant T cell epitopes. The inhibitory effect of DONQ52 (4 or 40 µg/mL) was assessed and compared to pan-HLA-DQ blockade (SPVL3 antibody). RESULTS: In HLA-DQ2.5+ CeD patients, DONQ52 reduced T cell responses to all wheat gluten peptides to an equivalent or more effective degree than pan-HLA-DQ antibody blockade. It reduced T cell responses to a cocktail of the most immunodominant wheat epitopes by a median of 87% (IQR 72-92). Notably, DONQ52 also substantially reduced T-cell responses to dominant barley hordein and rye secalin derived peptides. DONQ52 had no effect on T-cell responses to non-gluten antigens. CONCLUSION: DONQ52 can significantly block HLA-DQ2.5-restricted T cell responses to the most highly immunogenic gluten peptides in CeD. Our findings support in vitro data that DONQ52 displays selectivity and broad cross-reactivity against multiple gluten peptide:HLA-DQ2.5 complexes. This work provides proof-of-concept multi-specific antibody blockade has the potential to meaningfully inhibit pathogenic gluten-specific T-cell responses in CeD and supports ongoing therapeutic development.


Subject(s)
Antibodies, Bispecific , Celiac Disease , Glutens , HLA-DQ Antigens , Humans , Celiac Disease/immunology , Glutens/immunology , HLA-DQ Antigens/immunology , Antibodies, Bispecific/immunology , Antibodies, Bispecific/pharmacology , Female , Epitopes, T-Lymphocyte/immunology , Adult , Male , CD4-Positive T-Lymphocytes/immunology , Peptides/immunology , Middle Aged , T-Lymphocytes/immunology , Interferon-gamma/immunology , Interferon-gamma/metabolism , Immunodominant Epitopes/immunology , Diet, Gluten-Free
14.
Health Educ Res ; 39(1): 40-54, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-37490030

ABSTRACT

Poor adolescent mental health calls for universal prevention. The Mental Health Foundation's 'Peer Education Project' equips older students ('peer educators') to teach younger students ('peer learners') about mental health. The peer-led lessons cover defining good and bad mental health, risk and protective factors, self-care, help-seeking and looking after one another. While previous pre-post evaluations have suggested effectiveness, the mechanisms through which the intervention improves mental health literacy remain unclear. We purposively recruited seven secondary schools across England from 2020 to 2022 and collected data through five observations, 12 staff interviews and 15 student focus groups (totalling 134 students; 46 peer educators aged 14-18 years and 88 peer learners aged 11-13 years). Our realist analysis adopted retroductive logic, intertwining deductive and inductive approaches to test the initial programme theory against insights arising from the data. We developed Context-Mechanisms-Outcome configurations related to four themes: (i) modelling behaviours and forming supportive relationships, (ii) relevant and appropriate content, (iii) peer educators feeling empowered and (iV) a school culture that prioritises mental health support. Our refined programme theory highlights key mechanisms, contexts conducive to achieving the outcomes and ways to improve training, recruitment and delivery to maximise effectiveness for similar peer-led initiatives.


Subject(s)
Health Literacy , Mental Health , Adolescent , Humans , England , Health Education , Schools , Child
15.
J Intellect Disabil Res ; 68(2): 140-149, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37815212

ABSTRACT

BACKGROUND: The study aims to understand system barriers to research participation for people with intellectual disabilities. METHODS: A mixed-methods approach examined the inclusivity of people with intellectual disabilities (IDs) in a random sample of National Institute for Health and Care Research (NIHR) studies conducted in 2019-2020. An online questionnaire (stage 1) was sent to the selected studies lead investigators. An expert by experience panel of 25 people with intellectual disabilities (IDs, stage 2), discussed the stage 1 feedback. Descriptive statistics for quantitative data and thematic analysis for qualitative data was conducted. RESULTS: Of 180 studies reviewed, 131 studies (78%) excluded people with IDs. Of these, 45 (34.3%) study researchers provided feedback. Seven (20%) of the 34 studies which included people with IDs gave feedback. Of all respondents over half felt their study had some relevance to people with IDs. A minority (7.6%) stated their study had no relevance. For a quarter of respondents (23.5%), resource issues were a challenge. Qualitative analysis of both stages produced four overarching themes of Research design and delivery, Informed consent, Resource allocation, and Knowledge and skills. CONCLUSION: Health research continues to exclude people with IDs. Researchers and experts by experience identified non-accessible research design, lack of confidence with capacity and consent processes, limited resources such as time and a need for training as barriers. Ethics committees appear reluctant to include people with cognitive deficits to 'protect' them. People with IDs want to be included in research, not only as participants but also through coproduction.


Subject(s)
Intellectual Disability , Adult , Humans , Intellectual Disability/psychology , England , Surveys and Questionnaires
16.
Am J Otolaryngol ; 45(1): 104100, 2024.
Article in English | MEDLINE | ID: mdl-37977060

ABSTRACT

PURPOSE: To describe the creation of a multi-center cochlear implant database as a template for future medical database design. The first clinical question examined was the association between BMI on cochlear implant surgical time and postoperative outcome. MATERIALS AND METHODS: A retrospective repository in REDCap, named the "Repository of Cochlear Implant Information" (ROCII), was created and collected de-identified data on patients who underwent cochlear implantation. Data was exported and stratified into three BMI groupings (<25, 25.0-29.9, ≥ 30.0). Differences in surgical time and AZBio Sentence Test postoperative score changes were analyzed using the mixed-effect model. RESULTS: The mean BMI (n = 145) was 28.52, and the mean surgical time was 128.9 min. The BMI < 25 reference group (n = 50) and the BMI 25.0-29.9 group (n = 50) had an identical mean surgical time of 127.5 min. The BMI ≥30.0 group (n = 45) had a mean surgical time of 132 min, however this difference was not statistically significant when compared to the reference group (p = 0.4727). The mean AZBio postoperative score change (n = 74) was 63.32. The BMI < 25 reference group (n = 29) had a mean postoperative change of 56.66. The BMI 25.0-29.9 group (n = 22) and BMI ≥30.0 group (n = 23) had mean postoperative changes of 61.32 and 73.65 respectively, however these differences were not statistically significant compared to the reference group (p = 0.5847, 0.0637). CONCLUSION: BMI did not have a significant association with surgical time or postoperative outcome and therefore should not be a contraindication for implantation. ROCII will facilitate a deeper understanding of the evaluation process, outcomes, and patient experience of cochlear implantation across institutions. LEVEL OF EVIDENCE: Level 1.


Subject(s)
Cochlear Implantation , Cochlear Implants , Hearing Loss, Sensorineural , Speech Perception , Humans , Hearing Loss, Sensorineural/surgery , Retrospective Studies , Treatment Outcome , Multicenter Studies as Topic , Databases as Topic
17.
Eur Heart J ; 44(17): 1560-1570, 2023 05 01.
Article in English | MEDLINE | ID: mdl-37122097

ABSTRACT

BACKGROUND: Amyloid plaques and neurofibrillary tangles, the molecular lesions that characterize Alzheimer's disease (AD) and other forms of dementia, are emerging as determinants of proteinopathies 'beyond the brain'. This study aims to establish tau's putative pathophysiological mechanistic roles and potential future therapeutic targeting of tau in heart failure (HF). METHODS AND RESULTS: A mouse model of tauopathy and human myocardial and brain tissue from patients with HF, AD, and controls was employed in this study. Tau protein expression was examined together with its distribution, and in vitro tau-related pathophysiological mechanisms were identified using a variety of biochemical, imaging, and functional approaches. A novel tau-targeting immunotherapy was tested to explore tau-targeted therapeutic potential in HF. Tau is expressed in normal and diseased human hearts, in contradistinction to the current oft-cited observation that tau is expressed specifically in the brain. Notably, the main cardiac isoform is high-molecular-weight (HMW) tau (also known as big tau), and hyperphosphorylated tau segregates in aggregates in HF and AD hearts. As previously described for amyloid-beta, the tauopathy phenotype in human myocardium is of diastolic dysfunction. Perturbation in the tubulin code, specifically a loss of tyrosinated microtubules, emerged as a potential mechanism of myocardial tauopathy. Monoclonal anti-tau antibody therapy improved myocardial function and clearance of toxic aggregates in mice, supporting tau as a potential target for novel HF immunotherapy. CONCLUSION: The study presents new mechanistic evidence and potential treatment for the brain-heart tauopathy axis in myocardial and brain degenerative diseases and ageing.


Subject(s)
Alzheimer Disease , Tauopathies , Humans , Mice , Animals , tau Proteins/chemistry , tau Proteins/genetics , tau Proteins/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Tauopathies/metabolism , Tauopathies/pathology , Microtubules/metabolism , Microtubules/pathology , Myocardium/pathology
18.
Heart Lung Circ ; 33(1): 46-54, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38065830

ABSTRACT

BACKGROUND: Pulsed field ablation (PFA) is a newer ablation energy source with the potential to reduce complications and improve efficacy compared to conventional thermal atrial fibrillation (AF) ablation. This study aimed to present an initial single-centre Australian experience of PFA for AF ablation. METHODS: Initial consecutive patients undergoing PFA for paroxysmal or persistent AF at a single centre were included. Baseline patient characteristics, procedural data and clinical outcomes were collected prospectively at the time of the procedure. Patients were followed up at 3 months and 6-monthly thereafter. RESULTS: In total, 100 PFA procedures were performed in 97 patients under general anaesthesia. All pulmonary veins (403 of 403) were successfully isolated acutely. Median follow-up was 218 days (range, 16-343 days), and the Kaplan-Meier estimate for freedom from atrial arrhythmias at 180 days was 87% (95% confidence interval 79%-95%). Median procedure time was 74 minutes (range, 48-134 minutes). Median fluoroscopy dose-area product was 345 µGym2 (interquartile range, 169-685 µGym2). Two (2%) pseudoaneurysm vascular access complications occurred. There were no cases of thromboembolic complications, stroke, phrenic nerve palsy, pulmonary vein stenosis, atrio-oesophageal fistula, or pericardial tamponade. CONCLUSIONS: Pulsed field ablation can be performed safely and efficiently, with encouraging efficacy in early follow-up. Further data and clinical trials will be required to assess the comparative utility of PFA in contemporary AF ablation practice.


Subject(s)
Atrial Fibrillation , Catheter Ablation , Pulmonary Veins , Humans , Atrial Fibrillation/surgery , Australia/epidemiology , Pulmonary Veins/surgery , Catheter Ablation/methods , Treatment Outcome , Recurrence
19.
Neuroimage ; 273: 120109, 2023 06.
Article in English | MEDLINE | ID: mdl-37059157

ABSTRACT

Deep learning (DL) models find increasing application in mental state decoding, where researchers seek to understand the mapping between mental states (e.g., experiencing anger or joy) and brain activity by identifying those spatial and temporal features of brain activity that allow to accurately identify (i.e., decode) these states. Once a DL model has been trained to accurately decode a set of mental states, neuroimaging researchers often make use of methods from explainable artificial intelligence research to understand the model's learned mappings between mental states and brain activity. Here, we benchmark prominent explanation methods in a mental state decoding analysis of multiple functional Magnetic Resonance Imaging (fMRI) datasets. Our findings demonstrate a gradient between two key characteristics of an explanation in mental state decoding, namely, its faithfulness and its alignment with other empirical evidence on the mapping between brain activity and decoded mental state: explanation methods with high explanation faithfulness, which capture the model's decision process well, generally provide explanations that align less well with other empirical evidence than the explanations of methods with less faithfulness. Based on our findings, we provide guidance for neuroimaging researchers on how to choose an explanation method to gain insight into the mental state decoding decisions of DL models.


Subject(s)
Brain , Deep Learning , Humans , Brain/diagnostic imaging , Brain Mapping/methods , Artificial Intelligence , Benchmarking , Magnetic Resonance Imaging/methods
20.
J Neurochem ; 2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37596720

ABSTRACT

Spreading depolarization (SD) has emerged as an important contributor to the enlargement of acute brain injuries. We previously showed that the N-methyl-D-aspartate receptor antagonist ketamine was able to prevent deleterious consequences of SD in brain slices, under conditions of metabolic compromise. The current study aimed to extend these observations into an in vivo stroke model, to test whether gradients of metabolic capacity lead to differential accumulation of calcium (Ca2+ ) following SD. In addition, we tested whether ketamine protects vulnerable tissuewhile allowing SD to propagate through surrounding undamaged tissue. Focal lesions were generated using a distal middle cerebral artery occlusion in mice, and clusters of SD were generated at 20 min intervals with remote microinjection of potassium chloride. SDs invading peri-infarct regions had significantly different consequences, depending on the distance from the infarct core. Proximal to the lesion, Ca2+ transients were extended, as compared with responses in better-perfused tissue more remote from the lesion. Extracellular potential shifts were also longer and hyperemia responses were reduced in proximal regions following SDs. Consistent with in vitro studies, ketamine, at concentrations that did not abolish the propagation of SD, reduced the accumulation of intracellular Ca2+ in proximal regions following an SD wave. These findings suggest that deleterious consequences of SD can be targeted in vivo, without requiring outright block of SD initiation and propagation.

SELECTION OF CITATIONS
SEARCH DETAIL