Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 97
Filter
1.
Circulation ; 147(9): 718-727, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36335467

ABSTRACT

BACKGROUND: Hypertrophic cardiomyopathy (HCM) can be associated with an abnormal exercise response. In adults with HCM, abnormal results on exercise stress testing are predictive of heart failure outcomes. Our goal was to determine whether an abnormal exercise response is associated with adverse outcomes in pediatric patients with HCM. METHODS: In an international cohort study including 20 centers, phenotype-positive patients with primary HCM who were <18 years of age at diagnosis were included. Abnormal exercise response was defined as a blunted blood pressure response and new or worsened ST- or T-wave segment changes or complex ventricular ectopy. Sudden cardiac death (SCD) events were defined as a composite of SCD and aborted sudden cardiac arrest. Using Kaplan-Meier survival, competing outcomes, and Cox regression analyses, we analyzed the association of abnormal exercise test results with transplant and SCD event-free survival. RESULTS: Of 724 eligible patients, 630 underwent at least 1 exercise test. There were no major differences in clinical characteristics between those with or without an exercise test. The median age at exercise testing was 13.8 years (interquartile range, 4.7 years); 78% were male and 39% were receiving beta-blockers. A total of 175 (28%) had abnormal test results. Patients with abnormal test results had more severe septal hypertrophy, higher left atrial diameter z scores, higher resting left ventricular outflow tract gradient, and higher frequency of myectomy compared with participants with normal test results (P<0.05). Compared with normal test results, abnormal test results were independently associated with lower 5-year transplant-free survival (97% versus 88%, respectively; P=0.005). Patients with exercise-induced ischemia were most likely to experience all-cause death or transplant (hazard ratio, 4.86 [95% CI, 1.69-13.99]), followed by those with an abnormal blood pressure response (hazard ratio, 3.19 [95% CI, 1.32-7.71]). Exercise-induced ischemia was also independently associated with lower SCD event-free survival (hazard ratio, 3.32 [95% CI, 1.27-8.70]). Exercise-induced ectopy was not associated with survival. CONCLUSIONS: Exercise abnormalities are common in childhood HCM. An abnormal exercise test result was independently associated with lower transplant-free survival, especially in those with an ischemic or abnormal blood pressure response with exercise. Exercise-induced ischemia was also independently associated with SCD events. These findings argue for routine exercise testing in childhood HCM as part of ongoing risk assessment.


Subject(s)
Cardiomyopathy, Hypertrophic , Exercise Test , Male , Female , Humans , Cohort Studies , Prevalence , Death, Sudden, Cardiac/epidemiology , Death, Sudden, Cardiac/etiology , Cardiomyopathy, Hypertrophic/complications , Cardiomyopathy, Hypertrophic/diagnosis , Cardiomyopathy, Hypertrophic/surgery , Arrhythmias, Cardiac/etiology , Risk Factors
2.
Circulation ; 148(5): 394-404, 2023 08.
Article in English | MEDLINE | ID: mdl-37226762

ABSTRACT

BACKGROUND: The development of left ventricular systolic dysfunction (LVSD) in hypertrophic cardiomyopathy (HCM) is rare but serious and associated with poor outcomes in adults. Little is known about the prevalence, predictors, and prognosis of LVSD in patients diagnosed with HCM as children. METHODS: Data from patients with HCM in the international, multicenter SHaRe (Sarcomeric Human Cardiomyopathy Registry) were analyzed. LVSD was defined as left ventricular ejection fraction <50% on echocardiographic reports. Prognosis was assessed by a composite of death, cardiac transplantation, and left ventricular assist device implantation. Predictors of developing incident LVSD and subsequent prognosis with LVSD were assessed using Cox proportional hazards models. RESULTS: We studied 1010 patients diagnosed with HCM during childhood (<18 years of age) and compared them with 6741 patients with HCM diagnosed as adults. In the pediatric HCM cohort, median age at HCM diagnosis was 12.7 years (interquartile range, 8.0-15.3), and 393 (36%) patients were female. At initial SHaRe site evaluation, 56 (5.5%) patients with childhood-diagnosed HCM had prevalent LVSD, and 92 (9.1%) developed incident LVSD during a median follow-up of 5.5 years. Overall LVSD prevalence was 14.7% compared with 8.7% in patients with adult-diagnosed HCM. Median age at incident LVSD was 32.6 years (interquartile range, 21.3-41.6) for the pediatric cohort and 57.2 years (interquartile range, 47.3-66.5) for the adult cohort. Predictors of developing incident LVSD in childhood-diagnosed HCM included age <12 years at HCM diagnosis (hazard ratio [HR], 1.72 [CI, 1.13-2.62), male sex (HR, 3.1 [CI, 1.88-5.2), carrying a pathogenic sarcomere variant (HR, 2.19 [CI, 1.08-4.4]), previous septal reduction therapy (HR, 2.34 [CI, 1.42-3.9]), and lower initial left ventricular ejection fraction (HR, 1.53 [CI, 1.38-1.69] per 5% decrease). Forty percent of patients with LVSD and HCM diagnosed during childhood met the composite outcome, with higher rates in female participants (HR, 2.60 [CI, 1.41-4.78]) and patients with a left ventricular ejection fraction <35% (HR, 3.76 [2.16-6.52]). CONCLUSIONS: Patients with childhood-diagnosed HCM have a significantly higher lifetime risk of developing LVSD, and LVSD emerges earlier than for patients with adult-diagnosed HCM. Regardless of age at diagnosis with HCM or LVSD, the prognosis with LVSD is poor, warranting careful surveillance for LVSD, especially as children with HCM transition to adult care.


Subject(s)
Cardiomyopathy, Hypertrophic , Ventricular Dysfunction, Left , Adult , Humans , Male , Female , Child , Ventricular Function, Left , Stroke Volume , Risk Factors , Ventricular Dysfunction, Left/diagnostic imaging , Ventricular Dysfunction, Left/epidemiology , Ventricular Dysfunction, Left/complications , Prognosis , Cardiomyopathy, Hypertrophic/complications , Cardiomyopathy, Hypertrophic/diagnosis , Cardiomyopathy, Hypertrophic/epidemiology , Registries
3.
Neuroimage ; 297: 120721, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38968977

ABSTRACT

Individuals with congenital heart disease (CHD) have an increased risk of neurodevelopmental impairments. Given the hypothesized complexity linking genomics, atypical brain structure, cardiac diagnoses and their management, and neurodevelopmental outcomes, unsupervised methods may provide unique insight into neurodevelopmental variability in CHD. Using data from the Pediatric Cardiac Genomics Consortium Brain and Genes study, we identified data-driven subgroups of individuals with CHD from measures of brain structure. Using structural magnetic resonance imaging (MRI; N = 93; cortical thickness, cortical volume, and subcortical volume), we identified subgroups that differed primarily on cardiac anatomic lesion and language ability. In contrast, using diffusion MRI (N = 88; white matter connectivity strength), we identified subgroups that were characterized by differences in associations with rare genetic variants and visual-motor function. This work provides insight into the differential impacts of cardiac lesions and genomic variation on brain growth and architecture in patients with CHD, with potentially distinct effects on neurodevelopmental outcomes.

4.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Article in English | MEDLINE | ID: mdl-33658374

ABSTRACT

Hypertrophic cardiomyopathy (HCM) is a disease of heart muscle, which affects ∼1 in 500 individuals and is characterized by increased left ventricular wall thickness. While HCM is caused by pathogenic variants in any one of eight sarcomere protein genes, clinical expression varies considerably, even among patients with the same pathogenic variant. To determine whether background genetic variation or environmental factors drive these differences, we studied disease progression in 11 pairs of monozygotic HCM twins. The twin pairs were followed for 5 to 14 y, and left ventricular wall thickness, left atrial diameter, and left ventricular ejection fraction were collected from echocardiograms at various time points. All nine twin pairs with sarcomere protein gene variants and two with unknown disease etiologies had discordant morphologic features of the heart, demonstrating the influence of nonhereditable factors on clinical expression of HCM. Whole genome sequencing analysis of the six monozygotic twins with discordant HCM phenotypes did not reveal notable somatic genetic variants that might explain their clinical differences. Discordant cardiac morphology of identical twins highlights a significant role for epigenetics and environment in HCM disease progression.


Subject(s)
Cardiomyopathy, Hypertrophic , Echocardiography , Epigenesis, Genetic , Heart Ventricles , Muscle Proteins , Twins, Monozygotic , Adolescent , Adult , Cardiomyopathy, Hypertrophic/genetics , Cardiomyopathy, Hypertrophic/metabolism , Cardiomyopathy, Hypertrophic/physiopathology , Child, Preschool , Female , Follow-Up Studies , Heart Ventricles/metabolism , Heart Ventricles/physiopathology , Humans , Male , Middle Aged , Muscle Proteins/genetics , Muscle Proteins/metabolism
5.
Pediatr Cardiol ; 2023 Sep 09.
Article in English | MEDLINE | ID: mdl-37684488

ABSTRACT

Hypertrophic cardiomyopathy (HCM), a common cardiomyopathy in children, is an important cause of morbidity and mortality. Early recognition and appropriate management are important. An electrocardiogram (ECG) is often used as a screening tool in children to detect heart disease. The ECG patterns in children with HCM are not well described.ECGs collected from an international cohort of children, and adolescents (≤ 21 years) with HCM were reviewed. 482 ECGs met inclusion criteria. Age ranged from 1 day to 21 years, median 13 years. Of the 482 ECGs, 57 (12%) were normal. The most common abnormalities noted were left ventricular hypertrophy (LVH) in 108/482 (22%) and biventricular hypertrophy (BVH) in 116/482 (24%) Of the patients with LVH/BVH (n = 224), 135 (60%) also had a strain pattern (LVH in 83, BVH in 52). Isolated strain pattern (in the absence of criteria for hypertrophy) was seen in 43/482 (9%). Isolated pathologic Q waves were seen in 71/482 (15%). Pediatric HCM, 88% have an abnormal ECG. The most common ECG abnormalities were LVH or BVH with or without strain. Strain pattern without hypertrophy and a pathologic Q wave were present in a significant proportion (24%) of patients. Thus, a significant number of children with HCM have ECG abnormalities that are not typical for "hypertrophy". The presence of the ECG abnormalities described above in a child should prompt further examination with an echocardiogram to rule out HCM.

6.
Am Heart J ; 243: 43-53, 2022 01.
Article in English | MEDLINE | ID: mdl-34418362

ABSTRACT

BACKGROUND: The Long-terM OUtcomes after the Multisystem Inflammatory Syndrome In Children (MUSIC) study aims to characterize the frequency and time course of acute and long-term cardiac and non-cardiac sequelae in multisystem inflammatory syndrome in children associated with COVID-19 (MIS-C), which are currently poorly understood. METHODS: This multicenter observational cohort study will enroll at least 600 patients <21 years old who meet the Centers for Disease Control and Prevention case definition of MIS-C across multiple North American centers over 2 years. The study will collect detailed hospital and follow-up data for up to 5 years, and optional genetic testing. Cardiac imaging at specific time points includes standardized echocardiographic assessment (all participants) and cardiac magnetic resonance imaging (CMR) in those with left ventricular ejection fraction (LVEF) <45% during the acute illness. The primary outcomes are the worst LVEF and the highest coronary artery z-score of the left anterior descending or right coronary artery. Other outcomes include occurrence and course of non-cardiac organ dysfunction, inflammation, and major medical events. Independent adjudication of cases will classify participants as definite, possible, or not MIS-C. Analysis of the outcomes will include descriptive statistics and regression analysis with stratification by definite or possible MIS-C. The MUSIC study will provide phenotypic data to support basic and translational research studies. CONCLUSION: The MUSIC study, with the largest cohort of MIS-C patients and the longest follow-up period to date, will make an important contribution to our understanding of the acute cardiac and non-cardiac manifestations of MIS-C and the long-term effects of this public health emergency.


Subject(s)
COVID-19/complications , Heart/diagnostic imaging , Magnetic Resonance Imaging/methods , Systemic Inflammatory Response Syndrome , Adult , Child , Humans , National Heart, Lung, and Blood Institute (U.S.) , SARS-CoV-2 , Stroke Volume , United States , Ventricular Function, Left , Young Adult
7.
J Immunol ; 205(1): 251-260, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32444389

ABSTRACT

Over the first days of polymicrobial sepsis, there is robust activation of the innate immune system, causing the appearance of proinflammatory cytokines and chemokines, along with the appearance of extracellular histones, which are highly proinflammatory and prothrombotic. In the current study, we studied different innate immune responses in mice with knockout (KO) of complement protein 6 (C6). Polymorphonuclear neutrophils (PMNs) from these KO mice had defective innate immune responses, including defective expression of surface adhesion molecules, generation of superoxide anion, and appearance of reactive oxygen species and histone release after activation of PMNs, along with defective phagocytosis. In addition, in C6-/- mice, the NLRP3 inflammasome was defective both in PMNs and in macrophages. When these KO mice were subjected to polymicrobial sepsis, their survival was improved, associated with reduced levels in the plasma of proinflammatory cytokines and chemokines and lower levels of histones in plasma. In addition, sepsis-induced cardiac dysfunction was attenuated in these KO mice. In a model of acute lung injury induced by LPS, C6-/- mice showed reduced PMN buildup and less lung epithelial/endothelial cell dysfunction (edema and hemorrhage). These data indicate that C6-/- mice have reduced innate immune responses that result in less organ injury and improved survival after polymicrobial sepsis.


Subject(s)
Acute Lung Injury/immunology , Cardiomyopathies/immunology , Coinfection/immunology , Complement C6/metabolism , Immunity, Innate , Sepsis/immunology , Acute Lung Injury/diagnosis , Acute Lung Injury/pathology , Animals , Cardiomyopathies/diagnosis , Cardiomyopathies/pathology , Coinfection/complications , Coinfection/diagnosis , Coinfection/pathology , Complement C6/genetics , Disease Models, Animal , Humans , Inflammasomes/immunology , Inflammasomes/metabolism , Male , Mice , Mice, Knockout , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Neutrophils/immunology , Neutrophils/metabolism , Sepsis/complications , Sepsis/diagnosis , Sepsis/genetics , Severity of Illness Index
8.
Circulation ; 142(3): 217-229, 2020 07 21.
Article in English | MEDLINE | ID: mdl-32418493

ABSTRACT

BACKGROUND: Hypertrophic cardiomyopathy is the leading cause of sudden cardiac death (SCD) in children and young adults. Our objective was to develop and validate a SCD risk prediction model in pediatric hypertrophic cardiomyopathy to guide SCD prevention strategies. METHODS: In an international multicenter observational cohort study, phenotype-positive patients with isolated hypertrophic cardiomyopathy <18 years of age at diagnosis were eligible. The primary outcome variable was the time from diagnosis to a composite of SCD events at 5-year follow-up: SCD, resuscitated sudden cardiac arrest, and aborted SCD, that is, appropriate shock following primary prevention implantable cardioverter defibrillators. Competing risk models with cause-specific hazard regression were used to identify and quantify clinical and genetic factors associated with SCD. The cause-specific regression model was implemented using boosting, and tuned with 10 repeated 4-fold cross-validations. The final model was fitted using all data with the tuned hyperparameter value that maximizes the c-statistic, and its performance was characterized by using the c-statistic for competing risk models. The final model was validated in an independent external cohort (SHaRe [Sarcomeric Human Cardiomyopathy Registry], n=285). RESULTS: Overall, 572 patients met eligibility criteria with 2855 patient-years of follow-up. The 5-year cumulative proportion of SCD events was 9.1% (14 SCD, 25 resuscitated sudden cardiac arrests, and 14 aborted SCD). Risk predictors included age at diagnosis, documented nonsustained ventricular tachycardia, unexplained syncope, septal diameter z-score, left ventricular posterior wall diameter z score, left atrial diameter z score, peak left ventricular outflow tract gradient, and presence of a pathogenic variant. Unlike in adults, left ventricular outflow tract gradient had an inverse association, and family history of SCD had no association with SCD. Clinical and clinical/genetic models were developed to predict 5-year freedom from SCD. Both models adequately discriminated between patients with and without SCD events with a c-statistic of 0.75 and 0.76, respectively, and demonstrated good agreement between predicted and observed events in the primary and validation cohorts (validation c-statistic 0.71 and 0.72, respectively). CONCLUSION: Our study provides a validated SCD risk prediction model with >70% prediction accuracy and incorporates risk factors that are unique to pediatric hypertrophic cardiomyopathy. An individualized risk prediction model has the potential to improve the application of clinical practice guidelines and shared decision making for implantable cardioverter defibrillator insertion. Registration: URL: https://www.clinicaltrials.gov; Unique identifier: NCT0403679.


Subject(s)
Cardiomyopathy, Hypertrophic/epidemiology , Death, Sudden, Cardiac/epidemiology , Models, Statistical , Adolescent , Age Factors , Algorithms , Cardiomyopathy, Hypertrophic/complications , Child , Death, Sudden, Cardiac/etiology , Female , Humans , Male , Public Health Surveillance , Reproducibility of Results , Retrospective Studies , Risk Assessment , Risk Factors
9.
Circulation ; 141(8): 641-651, 2020 02 25.
Article in English | MEDLINE | ID: mdl-31736357

ABSTRACT

BACKGROUND: The Fontan operation creates a total cavopulmonary connection, a circulation in which the importance of pulmonary vascular resistance is magnified. Over time, this circulation leads to deterioration of cardiovascular efficiency associated with a decline in exercise performance. Rigorous clinical trials aimed at improving physiology and guiding pharmacotherapy are lacking. METHODS: The FUEL trial (Fontan Udenafil Exercise Longitudinal) was a phase III clinical trial conducted at 30 centers. Participants were randomly assigned udenafil, 87.5 mg twice daily, or placebo in a 1:1 ratio. The primary outcome was the between-group difference in change in oxygen consumption at peak exercise. Secondary outcomes included between-group differences in changes in submaximal exercise at the ventilatory anaerobic threshold, the myocardial performance index, the natural log of the reactive hyperemia index, and serum brain-type natriuretic peptide. RESULTS: Between 2017 and 2019, 30 clinical sites in North America and the Republic of Korea randomly assigned 400 participants with Fontan physiology. The mean age at randomization was 15.5±2 years; 60% of participants were male, and 81% were white. All 400 participants were included in the primary analysis with imputation of the 26-week end point for 21 participants with missing data (11 randomly assigned to udenafil and 10 to placebo). Among randomly assigned participants, peak oxygen consumption increased by 44±245 mL/min (2.8%) in the udenafil group and declined by 3.7±228 mL/min (-0.2%) in the placebo group (P=0.071). Analysis at ventilatory anaerobic threshold demonstrated improvements in the udenafil group versus the placebo group in oxygen consumption (+33±185 [3.2%] versus -9±193 [-0.9%] mL/min, P=0.012), ventilatory equivalents of carbon dioxide (-0.8 versus -0.06, P=0.014), and work rate (+3.8 versus +0.34 W, P=0.021). There was no difference in change of myocardial performance index, the natural log of the reactive hyperemia index, or serum brain-type natriuretic peptide level. CONCLUSIONS: In the FUEL trial, treatment with udenafil (87.5 mg twice daily) was not associated with an improvement in oxygen consumption at peak exercise but was associated with improvements in multiple measures of exercise performance at the ventilatory anaerobic threshold. CLINICAL TRIAL REGISTRATION: URL: https://www.clinicaltrials.gov. Unique identifier: NCT02741115.


Subject(s)
Heart Diseases/drug therapy , Phosphodiesterase 5 Inhibitors/therapeutic use , Pyrimidines/therapeutic use , Sulfonamides/therapeutic use , Adolescent , Child , Double-Blind Method , Drug Administration Schedule , Exercise , Female , Fontan Procedure , Heart Diseases/congenital , Heart Diseases/surgery , Heart Rate , Humans , Male , Natriuretic Peptide, Brain/blood , Oxygen Consumption , Phosphodiesterase 5 Inhibitors/adverse effects , Placebo Effect , Pyrimidines/adverse effects , Sulfonamides/adverse effects , Thrombosis/diagnosis , Thrombosis/etiology , Treatment Outcome
10.
Pediatr Crit Care Med ; 21(9): e827-e833, 2020 09.
Article in English | MEDLINE | ID: mdl-32701748

ABSTRACT

OBJECTIVES: Neonatal cardiac surgery for congenital cardiac defects is associated with significant morbidity and mortality, and there is a need for early identification of patients at highest risk of adverse outcomes. Because vascular endothelial injury mediates damage across organ systems, we measured serum biomarkers of endothelial injury in neonates following cardiopulmonary bypass and examined their associations with short-term outcomes. DESIGN: Prospective cohort study. SETTING: Pediatric cardiac ICU. PATIENTS: Thirty neonates less than 2 weeks old undergoing repair of congenital cardiac defects with cardiopulmonary bypass. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Biomarkers of endothelial integrity, angiopoietin-1 and angiopoietin-2, were measured preoperatively and at 24 hours postoperatively. A composite adverse outcome was defined as any of the following: stroke, need for renal replacement therapy, extracorporeal membrane oxygenation support, cardiac arrest, or death. Associations of biomarkers with adverse outcomes were examined using Wilcoxon rank-sum test. There was an increase in angiopoietin-2 from preoperatively to 24 hours postoperatively (p < 0.0001) and a decrease in angiopoietin-1 from preoperatively to 24 hours postoperatively (p < 0.0001). Patients with greater rise in angiopoietin-2 from preoperatively to 24 hours postoperatively had greater risk of composite adverse outcome (p = 0.04). They had a trend toward higher Vasoactive-Inotropic Score (p = 0.06) and a higher prevalence of low cardiac output syndrome (p = 0.06). Twenty-four hour postoperative angiopoietin-2 level was associated with the composite adverse outcome (p = 0.03). The rise in angiopoietin-2 level from preoperatively to 24 hours postoperatively directly correlated with cardiopulmonary bypass duration (r = 0.47; p = 0.01). CONCLUSIONS: In neonatal cardiac surgery, longer duration of cardiopulmonary bypass is directly associated with greater endothelial injury as measured by increased serum levels of angiopoietin-2. Angiopoietin-2 levels 24 hours postoperatively were significantly associated with a composite adverse outcome. Postoperative angiopoietin-2 level may serve as an early indicator of patients in need of closer monitoring and protective intervention. Further research into endothelial protective strategies is warranted.


Subject(s)
Cardiac Surgical Procedures , Heart Defects, Congenital , Angiopoietin-2 , Cardiac Surgical Procedures/adverse effects , Cardiopulmonary Bypass/adverse effects , Child , Heart Defects, Congenital/surgery , Humans , Infant, Newborn , Postoperative Complications/diagnosis , Postoperative Complications/epidemiology , Postoperative Complications/etiology , Prospective Studies
11.
Circulation ; 138(21): e653-e711, 2018 11 20.
Article in English | MEDLINE | ID: mdl-30571578

ABSTRACT

This review provides an updated summary of the state of our knowledge of the genetic contributions to the pathogenesis of congenital heart disease. Since 2007, when the initial American Heart Association scientific statement on the genetic basis of congenital heart disease was published, new genomic techniques have become widely available that have dramatically changed our understanding of the causes of congenital heart disease and, clinically, have allowed more accurate definition of the pathogeneses of congenital heart disease in patients of all ages and even prenatally. Information is presented on new molecular testing techniques and their application to congenital heart disease, both isolated and associated with other congenital anomalies or syndromes. Recent advances in the understanding of copy number variants, syndromes, RASopathies, and heterotaxy/ciliopathies are provided. Insights into new research with congenital heart disease models, including genetically manipulated animals such as mice, chicks, and zebrafish, as well as human induced pluripotent stem cell-based approaches are provided to allow an understanding of how future research breakthroughs for congenital heart disease are likely to happen. It is anticipated that this review will provide a large range of health care-related personnel, including pediatric cardiologists, pediatricians, adult cardiologists, thoracic surgeons, obstetricians, geneticists, genetic counselors, and other related clinicians, timely information on the genetic aspects of congenital heart disease. The objective is to provide a comprehensive basis for interdisciplinary care for those with congenital heart disease.


Subject(s)
Heart Defects, Congenital/diagnosis , American Heart Association , Aneuploidy , DNA Copy Number Variations , Down Syndrome/diagnosis , Down Syndrome/genetics , Genetic Variation , Heart Defects, Congenital/epidemiology , Heart Defects, Congenital/genetics , Humans , Polymorphism, Single Nucleotide , United States/epidemiology
12.
Radiology ; 290(3): 640-648, 2019 03.
Article in English | MEDLINE | ID: mdl-30561279

ABSTRACT

Purpose To evaluate myocardial strain and circumferential transmural strain difference (cTSD; the difference between epicardial and endocardial circumferential strain) in a genotyped cohort with hypertrophic cardiomyopathy (HCM) and to explore correlations between cTSD and other anatomic and functional markers of disease status. Left ventricular (LV) dysfunction may indicate early disease in preclinical HCM (sarcomere mutation carriers without LV hypertrophy). Cardiac MRI feature tracking may be used to evaluate myocardial strain in carriers of HCM sarcomere mutation. Materials and Methods Participants with HCM and their family members participated in a prospective, multicenter, observational study (HCMNet). Genetic testing was performed in all participants. Study participants underwent cardiac MRI with temporal resolution at 40 msec or less. LV myocardial strain was analyzed by using feature-tracking software. Circumferential strain was measured at the epicardial and endocardial surfaces; their difference yielded the circumferential transmural strain difference (cTSD). Multivariable analysis to predict HCM status was performed by using multinomial logistic regression adjusting for age, sex, and LV parameters. Results Ninety-nine participants were evaluated (23 control participants, 34 participants with preclinical HCM [positive for sarcomere mutation and negative for LV hypertrophy], and 42 participants with overt HCM [positive for sarcomere mutation and negative for LV hypertrophy]). The average age was 25 years ± 11 and 44 participants (44%) were women. Maximal LV wall thickness was 9.5 mm ± 1.4, 9.8 mm ± 2.2, and 16.1 mm ± 5.3 in control participants, participants with preclinical HCM (P = .496 vs control participants), and participants with overt HCM (P < .001 vs control participants), respectively. cTSD for control participants, preclinical HCM, and overt HCM was 14% ± 4, 17% ± 4, and 22% ± 7, respectively (P < .01 for all comparisons). In multivariable models (controlling for septal thickness and log-transformed N-terminal brain-type natriuretic peptide), cTSD was predictive of preclinical and overt HCM disease status (P < .01). Conclusion Cardiac MRI feature tracking identifies myocardial dysfunction not only in participants with overt hypertrophic cardiomyopathy, but also in carriers of sarcomere mutation without left ventricular hypertrophy, suggesting that contractile abnormalities are present even when left ventricular wall thickness is normal. © RSNA, 2018 Online supplemental material is available for this article.


Subject(s)
Cardiomyopathy, Hypertrophic/diagnostic imaging , Cardiomyopathy, Hypertrophic/genetics , Magnetic Resonance Imaging, Cine , Mutation/genetics , Sarcomeres/genetics , Ventricular Dysfunction, Left/genetics , Adult , Cardiomyopathy, Hypertrophic/physiopathology , Cross-Sectional Studies , Female , Humans , Image Interpretation, Computer-Assisted , Male , Prospective Studies , Ventricular Dysfunction, Left/diagnostic imaging , Ventricular Dysfunction, Left/physiopathology
13.
J Pediatr ; 213: 103-109, 2019 10.
Article in English | MEDLINE | ID: mdl-31227283

ABSTRACT

OBJECTIVE: To determine the impact of damaging genetic variation in proangiogenic pathways on placental function, complications of pregnancy, fetal growth, and clinical outcomes in pregnancies with fetal congenital heart defect. STUDY DESIGN: Families delivering a baby with a congenital heart defect requiring surgical repair in infancy were recruited. The placenta and neonate were weighed and measured. Hemodynamic variables were recorded from a third trimester (36.4 ± 1.7 weeks) fetal echocardiogram. Exome sequencing was performed on the probands (N = 133) and consented parents (114 parent-child trios, and 15 parent-child duos) and the GeneVetter analysis tool used to identify damaging coding sequence variants in 163 genes associated with the positive regulation of angiogenesis (PRA) (GO:0045766). RESULTS: In total, 117 damaging variants were identified in PRA genes in 133 congenital heart defect probands with 73 subjects having at least 1 variant. Presence of a damaging PRA variant was associated with increased umbilical artery pulsatility index (mean 1.11 with variant vs 1.00 without; P = .01). The presence of a damaging PRA variant was also associated with lower neonatal length and head circumference for age z score at birth (mean -0.44 and -0.47 with variant vs 0.23 and -0.05 without; P = .01 and .04, respectively). During median 3.1 years (IQR 2.0-4.1 years) of follow-up, deaths occurred in 2 of 60 (3.3%) subjects with no PRA variant and in 9 of 73 (12.3%) subjects with 1 or more PRA variants (P = .06). CONCLUSIONS: Damaging variants in proangiogenic genes may impact placental function and are associated with impaired fetal growth in pregnancies involving a fetus with congenital heart defect.


Subject(s)
Angiogenic Proteins/genetics , Fetal Development/genetics , Genetic Variation/genetics , Heart Defects, Congenital/genetics , Pregnancy Complications/etiology , Case-Control Studies , Female , Heart Defects, Congenital/diagnosis , Heart Defects, Congenital/surgery , Humans , Infant, Newborn , Male , Pregnancy
14.
Pediatr Cardiol ; 40(6): 1253-1257, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31263917

ABSTRACT

Obesity is associated with additional left ventricular hypertrophy (LVH) in adults with hypertrophic cardiomyopathy (HCM). It is not known whether obesity can lead to further LVH in children with HCM. Echocardiographic LV dimensions were determined in 504 children with HCM. Measurements of interventricular septal thickness (IVST) and posterior wall thickness (PWT), and patients' weight and height were recorded. Obesity was defined as a body mass index (BMI) ≥ 99th percentile for age and sex. IVST data was available for 498 and PWT data for 484 patients. Patient age ranged from 2 to 20 years (mean ± SD, 12.5 ± 3.9) and 340 (68%) were males. Overall, patient BMI ranged from 7 to 50 (22.7 ± 6.1). Obesity (BMI 18-50, mean 29.1) was present in 140 children aged 2-19.6 (11.3 ± 4.1). The overall mean IVST was 20.5 ± 9.6 mm and the overall mean PWT was 11.0 ± 8.4 mm. The mean IVST in the obese patients was 21.6 ± 10.0 mm and mean PWT was 13.3 ± 14.7 mm. The mean IVST in the non-obese patients was 20.1 ± 9.5 mm and mean PWT was 10.4 ± 4.3 mm. Obesity was not significantly associated with IVST (p = 0.12), but was associated with increased PWT (0.0011). Obesity is associated with increased PWT but not IVST in children with HCM. Whether obesity and its impact on LVH influences clinical outcomes in children with HCM needs to be studied.


Subject(s)
Cardiomyopathy, Hypertrophic/complications , Heart Ventricles/pathology , Obesity/complications , Ventricular Septum/pathology , Adolescent , Body Mass Index , Cardiomyopathy, Hypertrophic/physiopathology , Child , Child, Preschool , Echocardiography , Female , Humans , Male , Young Adult
15.
FASEB J ; 31(9): 4129-4139, 2017 09.
Article in English | MEDLINE | ID: mdl-28572445

ABSTRACT

Polymicrobial sepsis in mice causes myocardial dysfunction after generation of the complement anaphylatoxin, complement component 5a (C5a). C5a interacts with its receptors on cardiomyocytes (CMs), resulting in redox imbalance and cardiac dysfunction that can be functionally measured and quantitated using Doppler echocardiography. In this report we have evaluated activation of MAPKs and Akt in CMs exposed to C5a in vitro and after cecal ligation and puncture (CLP) in vivo In both cases, C5a in vitro caused activation (phosphorylation) of MAPKs and Akt in CMs, which required availability of both C5a receptors. Using immunofluorescence technology, activation of MAPKs and Akt occurred in left ventricular (LV) CMs, requiring both C5a receptors, C5aR1 and -2. Use of a water-soluble p38 inhibitor curtailed activation in vivo of MAPKs and Akt in LV CMs as well as the appearance of cytokines and histones in plasma from CLP mice. When mouse macrophages were exposed in vitro to LPS, activation of MAPKs and Akt also occurred. The copresence of the p38 inhibitor blocked these activation responses. Finally, the presence of the p38 inhibitor in CLP mice reduced the development of cardiac dysfunction. These data suggest that polymicrobial sepsis causes cardiac dysfunction that appears to be linked to activation of MAPKs and Akt in heart.-Fattahi, F., Kalbitz, M., Malan, E. A., Abe, E., Jajou, L., Huber-Lang, M. S., Bosmann, M., Russell, M. W., Zetoune, F. S., Ward, P. A. Complement-induced activation of MAPKs and Akt during sepsis: role in cardiac dysfunction.


Subject(s)
Complement C5a/metabolism , Gene Expression Regulation/physiology , Heart Diseases/etiology , Mitogen-Activated Protein Kinase Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Sepsis/metabolism , Animals , Complement C5a/genetics , Heart Diseases/metabolism , Interleukins , Male , Mitogen-Activated Protein Kinase Kinases/genetics , Proto-Oncogene Proteins c-akt/genetics , Rats , Rats, Sprague-Dawley , Receptor, Anaphylatoxin C5a/genetics , Receptor, Anaphylatoxin C5a/metabolism
16.
J Immunol ; 197(6): 2353-61, 2016 09 15.
Article in English | MEDLINE | ID: mdl-27521340

ABSTRACT

There is accumulating evidence during sepsis that cardiomyocyte (CM) homeostasis is compromised, resulting in cardiac dysfunction. An important role for complement in these outcomes is now demonstrated. Addition of C5a to electrically paced CMs caused prolonged elevations of intracellular Ca(2+) concentrations during diastole, together with the appearance of spontaneous Ca(2+) transients. In polymicrobial sepsis in mice, we found that three key homeostasis-regulating proteins in CMs were reduced: Na(+)/K(+)-ATPase, which is vital for effective action potentials in CMs, and two intracellular Ca(2+) concentration regulatory proteins, that is, sarcoplasmic/endoplasmic reticulum calcium ATPase 2 and the Na(+)/Ca(2+) exchanger. Sepsis caused reduced mRNA levels and reductions in protein concentrations in CMs for all three proteins. The absence of either C5a receptor mitigated sepsis-induced reductions in the three regulatory proteins. Absence of either C5a receptor (C5aR1 or C5aR2) diminished development of defective systolic and diastolic echocardiographic/Doppler parameters developing in the heart (cardiac output, left ventricular stroke volume, isovolumic relaxation, E' septal annulus, E/E' septal annulus, left ventricular diastolic volume). We also found in CMs from septic mice the presence of defective current densities for Ik1, l-type calcium channel, and Na(+)/Ca(2+) exchanger. These defects were accentuated in the copresence of C5a. These data suggest complement-related mechanisms responsible for development of cardiac dysfunction during sepsis.


Subject(s)
Coinfection/immunology , Myocytes, Cardiac/immunology , Myocytes, Cardiac/pathology , Sepsis/immunology , Sepsis/physiopathology , Animals , Calcium/metabolism , Calcium Channels, L-Type/immunology , Coinfection/microbiology , Coinfection/physiopathology , Complement C5a/immunology , Cytoplasm/chemistry , Cytoplasm/metabolism , Heart/physiopathology , Mice , Myocytes, Cardiac/microbiology , Receptor, Anaphylatoxin C5a/deficiency , Receptor, Anaphylatoxin C5a/immunology , Receptor, Anaphylatoxin C5a/physiology , Sarcoplasmic Reticulum Calcium-Transporting ATPases/immunology , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Sepsis/complications
17.
Cardiol Young ; 28(1): 39-45, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28927471

ABSTRACT

BACKGROUND: We have previously shown that the minor alleles of vascular endothelial growth factor A (VEGFA) single-nucleotide polymorphism rs833069 and superoxide dismutase 2 (SOD2) single-nucleotide polymorphism rs2758331 are both associated with improved transplant-free survival after surgery for CHD in infants, but the underlying mechanisms are unknown. We hypothesised that one or both of these minor alleles are associated with better systemic ventricular function, resulting in improved survival. METHODS: This study is a follow-up analysis of 422 non-syndromic CHD patients who underwent neonatal cardiac surgery with cardiopulmonary bypass. Echocardiographic reports were reviewed. Systemic ventricular function was subjectively categorised as normal, or as mildly, moderately, or severely depressed. The change in function was calculated as the change from the preoperative study to the last available study. Stepwise linear regression, adjusting for covariates, was performed for the outcome of change in ventricular function. Model comparison was performed using Akaike's information criterion. Only variables that improved the model prediction of change in systemic ventricular function were retained in the final model. RESULTS: Genetic and echocardiographic data were available for 335/422 subjects (79%). Of them, 33 (9.9%) developed worse systemic ventricular function during a mean follow-up period of 13.5 years. After covariate adjustment, the presence of the VEGFA minor allele was associated with preserved ventricular function (p=0.011). CONCLUSIONS: These data support the hypothesis that the mechanism by which the VEGFA single-nucleotide polymorphism rs833069 minor allele improves survival may be the preservation of ventricular function. Further studies are needed to validate this genotype-phenotype association and to determine whether this mechanism is related to increased vascular endothelial growth factor production.


Subject(s)
Heart Defects, Congenital/genetics , Heart Defects, Congenital/surgery , Vascular Endothelial Growth Factor A/genetics , Adolescent , Alleles , Cardiac Surgical Procedures/statistics & numerical data , Child , Child, Preschool , Echocardiography , Female , Follow-Up Studies , Heart Transplantation , Humans , Infant , Infant, Newborn , Linear Models , Male , Philadelphia , Polymorphism, Single Nucleotide , Ventricular Function
18.
Circulation ; 134(22): 1738-1748, 2016 Nov 29.
Article in English | MEDLINE | ID: mdl-27688314

ABSTRACT

BACKGROUND: Aberrant calcium signaling may contribute to arrhythmias and adverse remodeling in hypertrophic cardiomyopathy (HCM). Mutations in sarcomere genes may distinctly alter calcium handling pathways. METHODS: We analyzed gene expression, protein levels, and functional assays for calcium regulatory pathways in human HCM surgical samples with (n=25) and without (n=10) sarcomere mutations compared with control hearts (n=8). RESULTS: Gene expression and protein levels for calsequestrin, L-type calcium channel, sodium-calcium exchanger, phospholamban, calcineurin, and calcium/calmodulin-dependent protein kinase type II (CaMKII) were similar in HCM samples compared with controls. CaMKII protein abundance was increased only in sarcomere-mutation HCM (P<0.001). The CaMKII target pT17-phospholamban was 5.5-fold increased only in sarcomere-mutation HCM (P=0.01), as was autophosphorylated CaMKII (P<0.01), suggestive of constitutive activation. Calcineurin (PPP3CB) mRNA was not increased, nor was RCAN1 mRNA level, indicating a lack of calcineurin activation. Furthermore, myocyte enhancer factor 2 and nuclear factor of activated T cell transcription factor activity was not increased in HCM, suggesting that calcineurin pathway activation is not an upstream cause of increased CAMKII protein abundance or activation. SERCA2A mRNA transcript levels were reduced in HCM regardless of genotype, as was sarcoplasmic endoplasmic reticular calcium ATPase 2/phospholamban protein ratio (45% reduced; P=0.03). 45Ca sarcoplasmic endoplasmic reticular calcium ATPaseuptake assay showed reduced uptake velocity in HCM regardless of genotype (P=0.01). The cardiac ryanodine receptor was not altered in transcript, protein, or phosphorylated (pS2808, pS2814) protein abundance, and [3H]ryanodine binding was not different in HCM, consistent with no major modification of the ryanodine receptor. CONCLUSIONS: Human HCM demonstrates calcium mishandling through both genotype-specific and common pathways. Posttranslational activation of the CaMKII pathway is specific to sarcomere mutation-positive HCM, whereas sarcoplasmic endoplasmic reticular calcium ATPase 2 abundance and sarcoplasmic reticulum Ca uptake are depressed in both sarcomere mutation-positive and -negative HCM.


Subject(s)
Calcium Signaling/genetics , Cardiomyopathy, Hypertrophic/genetics , Cardiomyopathy, Hypertrophic/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Carrier Proteins/biosynthesis , Carrier Proteins/genetics , Carrier Proteins/metabolism , Case-Control Studies , Down-Regulation , Gene Expression , Genotype , Humans , RNA, Messenger/genetics , RNA, Messenger/metabolism , Ryanodine Receptor Calcium Release Channel/genetics , Ryanodine Receptor Calcium Release Channel/metabolism , Sarcomeres/genetics , Sarcomeres/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/biosynthesis , Sarcoplasmic Reticulum Calcium-Transporting ATPases/genetics , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism
20.
FASEB J ; 30(12): 3997-4006, 2016 12.
Article in English | MEDLINE | ID: mdl-27543123

ABSTRACT

Cardiac dysfunction develops during sepsis in humans and rodents. In the model of polymicrobial sepsis induced by cecal ligation and puncture (CLP), we investigated the role of the NLRP3 inflammasome in the heart. Mouse heart homogenates from sham-procedure mice contained high mRNA levels of NLRP3 and IL-1ß. Using the inflammasome protocol, exposure of cardiomyocytes (CMs) to LPS followed by ATP or nigericin caused release of mature IL-1ß. Immunostaining of left ventricular frozen sections before and 8 h after CLP revealed the presence of NLRP3 and IL-1ß proteins in CMs. CLP caused substantial increases in mRNAs for IL-1ß and NLRP3 in CMs which are reduced in the absence of either C5aR1 or C5aR2. After CLP, NLRP3-/- mice showed reduced plasma levels of IL-1ß and IL-6. In vitro exposure of wild-type CMs to recombinant C5a (rC5a) caused elevations in both cytosolic and nuclear/mitochondrial reactive oxygen species (ROS), which were C5a-receptor dependent. Use of a selective NOX2 inhibitor prevented increased cytosolic and nuclear/mitochondrial ROS levels and release of IL-1ß. Finally, NLRP3-/- mice had reduced defects in echo/Doppler parameters in heart after CLP. These studies establish that the NLRP3 inflammasome contributes to the cardiomyopathy of polymicrobial sepsis.-Kalbitz, M., Fattahi, F., Grailer, J. J., Jajou, L., Malan, E. A., Zetoune, F. S., Huber-Lang, M., Russell, M. W., Ward, P. A. Complement-induced activation of the cardiac NLRP3 inflammasome in sepsis.


Subject(s)
Complement C5a/metabolism , Inflammasomes/metabolism , Mitochondria/metabolism , Myocytes, Cardiac/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Sepsis/metabolism , Animals , Interleukin-1beta/metabolism , Interleukin-6/metabolism , Mice , Rats , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL