Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
J Infect Dis ; 220(10): 1558-1567, 2019 10 08.
Article in English | MEDLINE | ID: mdl-30911758

ABSTRACT

BACKGROUND: Infection control measures have played a major role in limiting human/camel-to-human transmission of Middle East respiratory syndrome coronavirus (MERS-CoV); however, development of effective and safe human or camel vaccines is warranted. METHODS: We extended and optimized our previous recombinant adenovirus 5 (rAd5)-based vaccine platform characterized by in vivo amplified and CD40-mediated specific responses to generate MERS-CoV S1 subunit-based vaccine. We generated rAd5 constructs expressing CD40-targeted S1 fusion protein (rAd5-S1/F/CD40L), untargeted S1 (rAd5-S1), and Green Fluorescent Protein (rAd5-GFP), and evaluated their efficacy and safety in human dipeptidyl peptidase 4 transgenic (hDPP4 Tg+) mice. RESULTS: Immunization of hDPP4 Tg+ mice with a single dose of rAd5-S1/F/CD40L elicited as robust and significant specific immunoglobulin G and neutralizing antibodies as those induced with 2 doses of rAd5-S1. After MERS-CoV challenge, both vaccines conferred complete protection against morbidity and mortality, as evidenced by significantly undetectable/reduced pulmonary viral loads compared to the control group. However, rAd5-S1- but not rAd5-S1/F/CD40L-immunized mice exhibited marked pulmonary perivascular hemorrhage post-MERS-CoV challenge despite the observed protection. CONCLUSIONS: Incorporation of CD40L into rAd5-based MERS-CoV S1 vaccine targeting molecule and molecular adjuvants not only enhances immunogenicity and efficacy but also prevents inadvertent pulmonary pathology after viral challenge, thereby offering a promising strategy to enhance safety and potency of vaccines.


Subject(s)
CD40 Ligand/pharmacology , Coronavirus Infections/prevention & control , Middle East Respiratory Syndrome Coronavirus/immunology , Spike Glycoprotein, Coronavirus/immunology , Viral Vaccines/immunology , Adenoviruses, Human/genetics , Adjuvants, Immunologic/genetics , Adjuvants, Immunologic/pharmacology , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , CD40 Ligand/genetics , Coronavirus Infections/immunology , Dipeptidyl Peptidase 4/genetics , Dipeptidyl Peptidase 4/metabolism , Drug Carriers , Genetic Vectors , Immunoglobulin G/blood , Lung/virology , Mice , Mice, Transgenic , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/pharmacology , Spike Glycoprotein, Coronavirus/genetics , Survival Analysis , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/genetics , Vaccines, Subunit/immunology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology , Viral Load , Viral Vaccines/administration & dosage , Viral Vaccines/genetics
2.
Front Oral Health ; 4: 1308657, 2023.
Article in English | MEDLINE | ID: mdl-38152410

ABSTRACT

Introduction: Periodontitis is an immune-mediated inflammatory disease affecting almost half of the adult population and is the leading cause of tooth loss in the United States. The role of extracellular nucleotide signaling including nucleotide metabolizing enzyme CD73 adds an important layer of interaction of purine mediators capable of orchestrating inflammatory outcomes. CD73 is able to catabolize 5'-adenosine monophosphate into adenosine at the extracellular level, playing a critical role in regulating many processes under physiological and pathological conditions. Here, we explored the role of CD73 in ligature-induced periodontitis in vivo comparing wild-type C57Bl/6J and CD73-deficient mice. Methods: We assessed gingival levels of inflammatory cytokines in vivo and in murine gingival fibroblasts in vitro, as well as bone loss, and RANKL-induced osteoclastogenesis. We have also analyzed CD73 mRNA in samples derived from patients diagnosed with severe periodontitis. Results: Our results in mice show that lack of CD73 resulted in increased inflammatory cytokines and chemokines such as IL-1ß, IL-17, Cxcl1 and Cxcl2 in diseased gingiva relative to the healthy-controls and in comparison with the wild type. CD73-deficient gingival fibroblasts also manifested a defective healing response with higher MMP-13 levels. CD73-deficient animals also showed increased osteoclastogenesis in vitro with increased mitochondrial metabolism typified by excessive activation of oxidative phosphorylation, increased mitochondrial membrane potential and accumulation of hydrogen peroxide. Micro-CT analysis revealed that lack of CD73 resulted in decreased bone mineral density, decreased trabecular bone volume and thickness as well as decreased bone volume in long bones. CD73 deficiency also resulted in increased alveolar bone loss in experimental periodontitis. Correlative studies of gingival samples from severe (Grade C) periodontitis showed decreased levels of CD73 compared to healthy controls, further supporting the relevance of our murine results. Conclusion: In conclusion, CD73 appears to play a protective role in the gingival periodontal tissue and bone homeostasis, regulating hyper-inflammatory state of stromal fibroblasts and osteoclast energy metabolism and being an important candidate for future target therapies to prevent or control immune-mediated inflammatory and osteolytic diseases.

3.
Infect Immun ; 79(1): 98-107, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20974819

ABSTRACT

Chlamydia trachomatis contains a conserved ∼7.5-kb plasmid. Loss of the plasmid results in reduced glycogen accumulation, failure to activate TLR2, and reduced infectivity. We hypothesized that reduced infectivity functions as a means of selection for plasmid maintenance. We directly examined the biological significance of the reduced infectivity associated with plasmid deficiency by determining the relative fitness of plasmid-deficient CM972 versus that of wild-type C. muridarum Nigg in mixed inocula in vitro and in vivo. C. muridarum Nigg rapidly out-competed its plasmid-cured derivative CM972 in vitro but was not competitive with CM3.1, a derivative of CM972 that has reverted to a normal infectivity phenotype. C. muridarum Nigg also effectively competed with CM972 during lower and upper genital tract infection in the mouse, demonstrating that strong selective pressure for plasmid maintenance occurs during infection. The severity of oviduct inflammation and dilatation resulting from these mixed infections correlated directly with the amount of C. muridarum Nigg in the initial inoculum, confirming the role of the plasmid in virulence. Genetic characterization of CM972 and CM3.1 revealed no additional mutations (other than loss of the plasmid) to account for the reduced infectivity of CM972 and detected a single base substitution in TC_0236 in CM3.1 that may be responsible for its restored infectivity. These data demonstrate that a chlamydial strain that differs genetically from its wild-type parent only with respect to the lack of the chlamydial plasmid is unable to compete in vitro and in vivo, likely explaining the rarity of plasmid-deficient isolates in nature.


Subject(s)
Chlamydia muridarum/genetics , Plasmids/genetics , Amino Acid Sequence , Animals , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Shedding , Base Sequence , Cell Line , Chlamydia Infections/microbiology , Chlamydia muridarum/pathogenicity , Female , Mice , Mice, Inbred C57BL , Molecular Sequence Annotation , Time Factors , Vaginosis, Bacterial/microbiology
4.
J Immunol ; 183(12): 7710-8, 2009 Dec 15.
Article in English | MEDLINE | ID: mdl-19923462

ABSTRACT

Ag presentation to T cells orchestrates the development of acquired immune response. Although it is considered that Ag presentation may persist at high levels during chronic infections, we have previously reported that in mice infected with bacillus Calmette-Guérin, Ag presentation gets drastically curtailed during the chronic stage of infection despite antigenic persistence. In this report we evaluated the mechanism of this curtailment. Ag presentation declined precipitously as the T cell response developed, and Ag presentation was not curtailed in mice that were deficient in CD8(+) T cells or MHC class II, suggesting that T cells regulate Ag presentation. Curtailment of Ag presentation was reduced in IFN-gamma-deficient mice, but not in mice with a deficiency/mutation in inducible NOS2, perforin, or Fas ligand. In hosts with no T cells (Rag1(-/-)), Ag presentation was not curtailed during the chronic stage of infection. However, adoptive transfer of wild-type, but not IFN-gamma(-/-), CD4(+) and CD8(+) T cells into Rag1-deficient hosts strongly curtailed Ag presentation. Increased persistence of Ag presentation in IFN-gamma-deficient hosts correlated to increased survival of dendritic cells, but not of macrophages, and was not due to increased stimulatory capacity of IFN-gamma-deficient dendritic cells. These results reveal a novel mechanism indicating how IFN-gamma prevents the persistence of Ag presentation, thereby preventing memory T cells from going into exhaustion.


Subject(s)
Antigen Presentation/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Dendritic Cells/immunology , Gene Expression Regulation/immunology , Growth Inhibitors/physiology , Interferon-gamma/biosynthesis , Interferon-gamma/physiology , Animals , Antigen Presentation/genetics , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/microbiology , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/microbiology , Cell Survival/genetics , Cell Survival/immunology , Cells, Cultured , Chronic Disease , Dendritic Cells/metabolism , Dendritic Cells/pathology , Female , Growth Inhibitors/biosynthesis , Growth Inhibitors/genetics , Immunologic Memory/genetics , Interferon-gamma/deficiency , Interferon-gamma/genetics , Listeriosis/microbiology , Listeriosis/pathology , Listeriosis/prevention & control , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Mycobacterium bovis/immunology , Tuberculosis/immunology , Tuberculosis/pathology , Tuberculosis/prevention & control
5.
Front Immunol ; 12: 747866, 2021.
Article in English | MEDLINE | ID: mdl-34603336

ABSTRACT

Respiratory syncytial virus (RSV) is a leading cause of respiratory infections worldwide and disease management measures are hampered by the lack of a safe and effective vaccine against the infection. We constructed a novel recombinant RSV vaccine candidate based on a deletion mutant vaccinia virus platform, in that the host range genes E3L and K3L were deleted (designated as VACVΔE3LΔK3L) and a poxvirus K3L ortholog gene was used as a marker for the rapid and efficient selection of recombinant viruses. The safety of the modified vaccinia virus was investigated by intranasal administration of BALB/c mice with the modified vaccinia vector using a dose known to be lethal in the wild-type Western Reserve. Only a minor loss of body weight by less than 5% and mild pulmonary inflammation were observed, both of which were transient in nature following nasal administration of the high-dose modified vaccinia virus. In addition, the viruses were cleared from the lung in 2 days with no viral invasions of the brain and other vital organs. These results suggest that the virulence of the virus has been essentially abolished. We then investigated the efficiency of the vector for the delivery of vaccines against RSV through comparison with another RSV vaccine delivered by the widely used Modified Vaccinia virus Ankara (MVA) backbone. In the cotton rats, we found a single intramuscular administration of VACVΔE3LΔK3L-vectored vaccine elicited immune responses and protection at a level comparable to the MVA-vectored vaccine against RSV infection. The distinct features of this novel VACV vector, such as an E3L deletion for attenuation and a K3L ortholog for positive selection and high efficiency for vaccine delivery, could provide unique advantages to the application of VACV as a platform for vaccine development.


Subject(s)
Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus Vaccines/immunology , Vaccines, Synthetic/immunology , Animals , Female , Genetic Vectors , Mice , Mice, Inbred BALB C , Respiratory Syncytial Viruses , Sigmodontinae , Vaccine Development , Viral Fusion Proteins/immunology
6.
Front Immunol ; 12: 785349, 2021.
Article in English | MEDLINE | ID: mdl-35095861

ABSTRACT

SARS-CoV-2 infections present a tremendous threat to public health. Safe and efficacious vaccines are the most effective means in preventing the infections. A variety of vaccines have demonstrated excellent efficacy and safety around the globe. Yet, development of alternative forms of vaccines remains beneficial, particularly those with simpler production processes, less stringent storage conditions, and the capability of being used in heterologous prime/boost regimens which have shown improved efficacy against many diseases. Here we reported a novel DNA vaccine comprised of the SARS-CoV-2 spike protein fused with CD40 ligand (CD40L) serving as both a targeting ligand and molecular adjuvant. A single intramuscular injection in Syrian hamsters induced significant neutralizing antibodies 3-weeks after vaccination, with a boost substantially improving immune responses. Moreover, the vaccine also reduced weight loss and suppressed viral replication in the lungs and nasal turbinates of challenged animals. Finally, the incorporation of CD40L into the DNA vaccine was shown to reduce lung pathology more effectively than the DNA vaccine devoid of CD40L. These results collectively indicate that this DNA vaccine candidate could be further explored because of its efficacy and known safety profile.


Subject(s)
CD40 Ligand/immunology , COVID-19/immunology , Mesocricetus/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Vaccines, DNA/immunology , Adjuvants, Immunologic/pharmacology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/virology , Cell Line , Female , HEK293 Cells , Humans , Lung/immunology , Lung/virology , Mesocricetus/virology , Models, Animal , Vaccination/methods , Vaccines, Inactivated/immunology
7.
Emerg Microbes Infect ; 9(1): 2046-2060, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32873194

ABSTRACT

Zika virus (ZIKV) infection is a serious public threat with cases reported in about 70 countries and territories. One of the most serious consequences of ZIKV infection is congenital microcephaly in babies. Congenital microcephaly has been suggested to result from infection of neural progenitor cells (NPCs) in the developing fetal brain. However, the molecular and cellular mechanisms underlying microcephaly development remains to be fully elucidated. In this study, we employed quantitative proteomics to determine protein expression profile that occur during viral replication in NPCs. Bioinformatics analysis of the protein expression changes resulted in the identification of a wide range of cell signaling pathways. Specifically, pathways involved in neurogenesis and embryonic development were markedly altered, along with those associated with cell cycle, apoptosis, lipid metabolism and oxidative stress. Notably, the differential regulation of Ephrin Receptor and PPAR signaling pathways, as revealed by quantitative proteomics and validated by qPCR array, underscores the need to explore these pathways in disease development. Collectively, these results indicate that ZIKV-induced pathogenesis involves complex virus-host reactions; the findings reported here could help shed light on the mechanisms underlying ZIKV-induced microcephaly and ZIKV replication in NPCs.


Subject(s)
Neural Stem Cells/metabolism , Receptors, Eph Family/metabolism , Signal Transduction , Zika Virus Infection/metabolism , Zika Virus/pathogenicity , Animals , Cell Line , Chlorocebus aethiops , Computational Biology , Gene Expression Regulation , Lipid Metabolism , Neural Stem Cells/cytology , Neural Stem Cells/virology , Oxidative Stress , Peroxisome Proliferator-Activated Receptors/metabolism , Proteomics , Vero Cells , Virus Replication , Zika Virus Infection/virology
8.
Sci Rep ; 9(1): 11638, 2019 08 12.
Article in English | MEDLINE | ID: mdl-31406266

ABSTRACT

Sigmodon hispidus or cotton rat is an excellent animal model for studying human infections of respiratory viruses including respiratory syncytial virus (RSV), which is the leading cause of hospitalization in infants and causes high rates of infection in the elderly and immunocompromised patient populations. Despite several decades of research, no vaccine has been licensed whereas inactivated vaccines have been shown to induce severe adverse reaction in a clinical trial, with other forms of RSV vaccine also found to induce enhanced disease in preclinical animal studies. While arguably the cotton rat is the best small animal model for evaluation of RSV vaccines and antivirals, many important genes of the immune system remain to be isolated. Programmed cell death-1 (PD-1) plays an integral role in regulating many aspects of immunity by inducing suppressive signals. In this study, we report the isolation of mRNA encoding the cotton rat PD-1 (crPD-1) and characterization of the PD-1 protein. crPD-1 bound to its cognate ligand on dendritic cells and effectively suppressed cytokine secretion. Moreover, using the newly acquired gene sequence, we observed a decreased level of crPD-1 levels in cotton rats with enhanced respiratory disease induced by inactivated RSV vaccine, unraveling a new facet of vaccine-induced disease.


Subject(s)
Programmed Cell Death 1 Receptor/genetics , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus Vaccines/adverse effects , Respiratory Syncytial Virus, Human/immunology , Sigmodontinae/genetics , Animals , Cytokines/immunology , Cytokines/metabolism , Dendritic Cells/immunology , Dendritic Cells/metabolism , Disease Models, Animal , Gene Expression Regulation/immunology , HEK293 Cells , Humans , Programmed Cell Death 1 Receptor/immunology , Programmed Cell Death 1 Receptor/metabolism , RNA, Messenger/genetics , RNA, Messenger/isolation & purification , RNA, Viral/genetics , RNA, Viral/isolation & purification , Respiratory Syncytial Virus Infections/blood , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Virus Vaccines/administration & dosage , Respiratory Syncytial Virus Vaccines/immunology , Sequence Analysis, RNA , Sigmodontinae/immunology , Vaccination/adverse effects , Vaccines, Inactivated/administration & dosage , Vaccines, Inactivated/adverse effects , Vaccines, Inactivated/immunology
9.
Vaccine ; 37(30): 4031-4039, 2019 07 09.
Article in English | MEDLINE | ID: mdl-31186190

ABSTRACT

Chitosan is a polysaccharide capable of augmenting immune responses with a proven safety record in animals and humans. These properties make it a potentially attractive agent for the prevention and treatment of infectious disease. Infection by respiratory syncytial virus (RSV) is the leading cause of serious lower respiratory disease in young children throughout the world. There is no licensed vaccine available against RSV whereas inactivated vaccine is known to cause enhanced respiratory disease instead of protection. Here, we investigated whether chitosan administered one or three days post-infection could protect animals against RSV infection and whether it could alter immune responses or immunopathology induced by inactivated RSV vaccine when administered twice before RSV infection. We found chitosan could modestly protect animals against RSV infection when given post-infection, while, in conjunction with inactivated RSV vaccine when given pre-infection, it could significantly reduce RSV infection in mice. Further mechanistic investigation revealed that chitosan enhanced antigen-specific immune responses through augmenting the induction of regulatory T cells, lung resident T cells and neutralizing antibodies while reversing Th2-skewed immune responses induced by inactivated RSV vaccine but, surprisingly, failing to reverse lung histopathology. Overall, this study sheds more light on the molecular mechanisms underlying inactivated RSV vaccine-induced disease.


Subject(s)
Chitosan/therapeutic use , Lung/pathology , Lung/virology , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus Vaccines/therapeutic use , Respiratory Syncytial Virus, Human/drug effects , Animals , Antibodies, Neutralizing/metabolism , Enzyme-Linked Immunosorbent Assay , Female , Flow Cytometry , Mice , Mice, Inbred BALB C , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus, Human/immunology , Respiratory Syncytial Virus, Human/pathogenicity , T-Lymphocytes/metabolism , T-Lymphocytes, Regulatory/metabolism
10.
Front Immunol ; 10: 597, 2019.
Article in English | MEDLINE | ID: mdl-30984178

ABSTRACT

Respiratory syncytial virus (RSV) infection is a severe threat to young children and the elderly. Despite decades of research, no vaccine has been approved. Notably, instead of affording protection, a formalin-inactivated RSV vaccine induced severe respiratory disease including deaths in vaccinated children in a 1960s clinical trial; however, recent studies indicate that other forms of experimental vaccines can also induce pulmonary pathology in pre-clinical studies. These findings suggest that multiple factors/pathways could be involved in the development of enhanced respiratory diseases. Clearly, a better understanding of the mechanisms underlying such adverse reactions is critically important for the development of safe and efficacious vaccines against RSV infection, given the exponential growth of RSV vaccine clinical trials in recent years. By employing an integrated systems biology approach in a pre-clinical cotton rat model, we unraveled a complex network of pulmonary canonical pathways leading to disease development in vaccinated animals upon subsequent RSV infections. Cytokines including IL-1, IL-6 GRO/IL-8, and IL-17 in conjunction with mobilized pulmonary inflammatory cells could play important roles in disease development, which involved a wide range of host responses including exacerbated pulmonary inflammation, oxidative stress, hyperreactivity, and homeostatic imbalance between coagulation and fibrinolysis. Moreover, the observed elevated levels of MyD88 implicate the involvement of this critical signal transduction module as the central node of the inflammatory pathways leading to exacerbated pulmonary pathology. Finally, the immunopathological consequences of inactivated vaccine immunization and subsequent RSV exposure were further substantiated by histological analyses of these key proteins along with inflammatory cytokines, while hypercoagulation was supported by increased pulmonary fibrinogen/fibrin accompanied by reduced levels of plasma D-dimers. Enhanced respiratory disease associated with inactivated RSV vaccine involves a complex network of host responses, resulting in significant pulmonary lesions and clinical manifestations such as tachypnea and airway obstruction. The mechanistic insight into the convergence of different signal pathways and identification of biomarkers could help facilitate the development of safe and effective RSV vaccine and formulation of new targeted interventions.


Subject(s)
Lung/immunology , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus Vaccines/adverse effects , Respiratory Syncytial Viruses/immunology , Animals , Cytokines/immunology , Lung/pathology , Rats , Respiratory Syncytial Virus Infections/pathology , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus Vaccines/immunology , Respiratory Syncytial Virus Vaccines/pharmacology , Sigmodontinae , Vaccination , Vaccines, Inactivated/adverse effects , Vaccines, Inactivated/immunology , Vaccines, Inactivated/pharmacology
11.
PLoS One ; 13(7): e0199067, 2018.
Article in English | MEDLINE | ID: mdl-30052641

ABSTRACT

Cotton rats are an important animal model to study infectious diseases. They have demonstrated higher susceptibility to a wider variety of human pathogens than other rodents and are also the animal model of choice for pre-clinical evaluations of some vaccine candidates. However, the genome of cotton rats remains to be fully sequenced, with much fewer genes cloned and characterised compared to other rodent species. Here we report the cloning and characterization of CD40 ligand, whose human and murine counterparts are known to be expressed on a range of cell types including activated T cells and B cells, dendritic cells, granulocytes, macrophages and platelets and exerts a broad array of immune responses. The cDNA for cotton rat CD40L we isolated is comprised of 1104 nucleotides with an open reading frame (ORF) of 783bp coding for a 260 amino acid protein. The recombinant cotton rat CD40L protein was recognized by an antibody against mouse CD40L. Moreover, it demonstrated functional activities on immature bone marrow dendritic cells by upregulating surface maturation markers (CD40, CD54, CD80, and CD86), and increasing IL-6 gene and protein expression. The availability of CD40L gene identity could greatly facilitate mechanistic research on pathogen-induced-immunopathogenesis and vaccine-elicited immune responses.


Subject(s)
CD40 Ligand/chemistry , CD40 Ligand/pharmacology , Dendritic Cells/drug effects , Sigmodontinae/immunology , Amino Acid Sequence , Animals , Antigens, CD/genetics , Antigens, CD/immunology , B-Lymphocytes/cytology , B-Lymphocytes/immunology , Base Sequence , Blood Platelets/cytology , Blood Platelets/immunology , Bone Marrow Cells/cytology , Bone Marrow Cells/immunology , CD40 Ligand/genetics , CD40 Ligand/immunology , Cloning, Molecular , Dendritic Cells/cytology , Dendritic Cells/immunology , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Granulocytes/cytology , Granulocytes/immunology , HeLa Cells , Humans , Interleukin-6/genetics , Interleukin-6/immunology , Macrophages/cytology , Macrophages/immunology , Mesocricetus , Mice , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Recombinant Proteins/pharmacology , Sequence Alignment , Sequence Homology, Amino Acid , T-Lymphocytes/cytology , T-Lymphocytes/immunology
12.
Sci Rep ; 8(1): 16648, 2018 11 09.
Article in English | MEDLINE | ID: mdl-30413743

ABSTRACT

Respiratory Syncytial Virus (RSV) infects almost all children under the age of one and is the leading cause of hospitalization among infants. Despite several decades of research with dozens of candidate vaccines being vigorously evaluated in pre-clinical and clinical studies, there is no licensed vaccine available to date. Here, the RSV fusion protein (F) was fused with CD40 ligand and delivered by an adenoviral vector into BALB/c mice where the CD40 ligand serves two vital functions as a molecular adjuvant and an antigen-targeting molecule. In contrast to a formaldehyde-inactivated vaccine, the vectored vaccine effectively protected animals against RSV without inducing enhanced respiratory disease. This protection involved a robust induction of neutralizing antibodies and memory CD8 T cells, which were not observed in the inactivated vaccine group. Finally, the vectored vaccine was able to elicit long-lasting protection against RSV, one of the most challenging issues in RSV vaccine development. Further studies indicate that the long lasting protection elicited by the CD40 ligand targeted vaccine was mediated by increased levels of effector memory CD8 T cell 3 months post-vaccination.


Subject(s)
Antibodies, Viral/immunology , CD40 Ligand/immunology , CD8-Positive T-Lymphocytes/immunology , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus Vaccines/administration & dosage , Respiratory Syncytial Viruses/immunology , Viral Fusion Proteins/immunology , Adjuvants, Immunologic , Animals , Antibodies, Neutralizing/immunology , Female , Genetic Vectors , HeLa Cells , Humans , Immunization , Mice , Mice, Inbred BALB C , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus Infections/virology
13.
J Mol Neurosci ; 47(2): 322-39, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22467039

ABSTRACT

Mild ischaemic exposures before or after severe injurious ischaemia that elicit neuroprotective responses are referred to as preconditioning and post-conditioning. The corresponding molecular mechanisms of neuroprotection are not completely understood. Identification of the genes and associated pathways of corresponding neuroprotection would provide insight into neuronal survival, potential therapeutic approaches and assessments of therapies for stroke. The objectives of this study were to use global gene expression approach to infer the molecular mechanisms in pre- and post-conditioning-derived neuroprotection in cortical neurons following oxygen and glucose deprivation (OGD) in vitro and then to apply these findings to predict corresponding functional pathways. To this end, microarray analysis was applied to rat cortical neurons with or without the pre- and post-conditioning treatments at 3-h post-reperfusion, and differentially expressed transcripts were subjected to statistical, hierarchical clustering and pathway analyses. The expression patterns of 3,431 genes altered under all conditions of ischaemia (with and without pre- or post-conditioning). We identified 1,595 genes that were commonly regulated within both the pre- and post-conditioning treatments. Cluster analysis revealed that transcription profiles clustered tightly within controls, non-conditioned OGD and neuroprotected groups. Two clusters defining neuroprotective conditions associated with up- and downregulated genes were evident. The five most upregulated genes within the neuroprotective clusters were Tagln, Nes, Ptrf, Vim and Adamts9, and the five most downregulated genes were Slc7a3, Bex1, Brunol4, Nrxn3 and Cpne4. Pathway analysis revealed that the intracellular and second messenger signalling pathways in addition to cell death were predominantly associated with downregulated pre- and post-conditioning associated genes, suggesting that modulation of cell death and signal transduction pathways plays a role in the neuroprotection. A high degree of similarity in the pathways associated with the differentially expressed genes in the pre- and post-conditioning treatments suggests that similar molecular mechanisms may mediate their neuroprotective effects.


Subject(s)
Cytoprotection/genetics , Gene Expression Regulation/physiology , Ischemic Preconditioning/methods , Neurons/cytology , Neurons/physiology , Transcriptome , Animals , Cells, Cultured , Cerebral Cortex/physiology , Female , Oligonucleotide Array Sequence Analysis/methods , Rats , Rats, Wistar
14.
J Mol Neurosci ; 43(3): 428-42, 2011 Mar.
Article in English | MEDLINE | ID: mdl-20953735

ABSTRACT

Preconditioning and postconditioning are mild ischemic exposures before or after severe injurious ischemia, respectively, that elicit endogenous neuroprotective responses. Molecular mechanisms of neuroprotection through preconditioning and postconditioning are not completely understood. Here we optimized the in vitro oxygen and glucose deprivation (OGD) models of preconditioning and postconditioning in primary cortical neuron cultures that allow the studies of the corresponding molecular mechanisms of neuroprotection. We found that the cortical cells preconditioned with a single 45-min OGD treatment administered 24 h prior to injurious 2 h OGD were robustly protected after both 3 h and 16 h of reperfusion. For the postconditioning treatment, we found that three cycles of 15 min OGD followed by 15 min reperfusion, applied immediately after injurious 2 h OGD and prior to complete reperfusion, resulted in effective neuroprotection at both 3 h and 16 h of reperfusion. Using real-time RT-PCR arrays focused on genes of the apoptosis and PI3K-Akt pathways, we found that injurious OGD mainly induced apoptosis-related and repressed PI3K-Akt pathway-related genes after either 3 h or 16 h of reperfusion. Preconditioning treatment resulted in the activation of both pro-survival and anti-apoptotic pathways after 3 h of reperfusion and mainly anti-apoptotic pathway after 16 h of reperfusion. In contrast, the activation of PI3K-Akt pathway mainly contributed to the neuroprotective effect by the postconditioning treatment after 3 h of reperfusion, but differential gene expression likely contributed minimally, if at all, to the neuroprotection observed after 16 h of reperfusion. Among the novel markers of neuroprotection, Nol3 gene upregulation was observed after 3 h of reperfusion following either preconditioning or postconditioning treatments and after 16 h of reperfusion following preconditioning treatment.


Subject(s)
Apoptosis/physiology , Ischemic Preconditioning , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/physiology , Animals , Biomarkers/metabolism , Brain Ischemia/metabolism , Brain Ischemia/pathology , Brain Ischemia/physiopathology , Cells, Cultured , Cerebral Cortex/cytology , Gene Expression Profiling , Glucose/metabolism , Neurons/cytology , Neurons/physiology , Oxygen/metabolism , Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins c-akt/genetics , Rats , Rats, Wistar
15.
Infect Disord Drug Targets ; 11(5): 437-48, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21827435

ABSTRACT

Disease caused by cytomegalovirus (CMV) infection can clinically manifest in a variety of ways in the immunodeficient host and lead to significant morbidity and mortality. Infections can be primary, occur as a result of reactivation of latent virus, or infection with a new strain of CMV. Cell-mediated immunity is the main defense against CMV disease. This component of the immune system is frequently affected in children who are born prematurely, have undergone solid organ transplantation or hematopoietic stem cell transplantation, or have infection with human immunodeficiency virus. Accordingly, these children are at increased risk for severe disease due to CMV. In addition, CMV itself alters cell-mediated immunity and may predispose hosts to other bacterial, fungal, or viral infections as well as predispose to graft rejection. The importance of CMV in these special populations of children, emphasizing epidemiology, risk factors, and preventive strategies, is reviewed.


Subject(s)
Cytomegalovirus Infections/etiology , Immunocompromised Host , Opportunistic Infections/virology , Animals , Child , Cytomegalovirus/isolation & purification , Cytomegalovirus Infections/immunology , Cytomegalovirus Infections/virology , HIV Infections/complications , Humans , Immunity, Cellular/immunology , Opportunistic Infections/immunology , Organ Transplantation/methods , Risk Factors , Stem Cell Transplantation/methods
16.
Vaccine ; 29(47): 8490-5, 2011 Nov 03.
Article in English | MEDLINE | ID: mdl-21939719

ABSTRACT

The potency of varicella vaccines is currently determined by a plaque assay technique, which usually takes seven days and is laborious and has considerable inter- and intra-assay variability. Here, we report a new potency assay for varicella vaccine based on quantitative polymerase chain reaction in conjunction with a much more efficient virus infection step. Potency results can be obtained within 24h of infection and demonstrates acceptable accuracy and reproducibility when compared with the plaque assay, which relies on manual counting of plaques formed one week after viral infection. Using multiple vaccine lots from 7 manufacturers, we found no significant difference in infectivity determined between the new assay and plaque assay. The optimized conditions for viral infection and polymerase chain reaction are of significant value for the potency determination of the vaccine due to its rapidity, accuracy and the high throughput capacity of the assay.


Subject(s)
Chickenpox Vaccine/immunology , Chickenpox Vaccine/standards , Polymerase Chain Reaction/methods , Technology, Pharmaceutical/methods , Chickenpox Vaccine/genetics , Humans , Quality Control
17.
BMC Med Genomics ; 2: 56, 2009 Aug 21.
Article in English | MEDLINE | ID: mdl-19698101

ABSTRACT

BACKGROUND: Tobacco smoking is associated with lung cancer and other respiratory diseases. However, little is known about the global molecular changes that precede the appearance of clinically detectable symptoms. In this study, the effects of mainstream tobacco smoke (MTS) on global transcription in the mouse lung were investigated. METHODS: Male C57B1/CBA mice were exposed to MTS from two cigarettes daily, 5 days/week for 6 or 12 weeks. Mice were sacrificed immediately, or 6 weeks following the last cigarette. High density DNA microarrays were used to characterize global gene expression changes in whole lung. Microarray results were validated by Quantitative real-time RT-PCR. Further analysis of protein synthesis and function was carried out for a select set of genes by ELISA and Western blotting. RESULTS: Globally, seventy nine genes were significantly differentially expressed following the exposure to MTS. These genes were associated with a number of biological processes including xenobiotic metabolism, redox balance, oxidative stress and inflammation. There was no differential gene expression in mice exposed to smoke and sampled 6 weeks following the last cigarette. Moreover, cluster analysis demonstrated that these samples clustered alongside their respective controls. We observed simultaneous up-regulation of interleukin 6 (IL-6) and its antagonist, suppressor of cytokine signalling (SOCS3) mRNA following 12 weeks of MTS exposure. Analysis by ELISA and Western blotting revealed a concomitant increase in total IL-6 antigen levels and its downstream targets, including phosphorylated signal transducer and activator of transcription 3 (Stat3), basal cell-lymphoma extra large (BCL-XL) and myeloid cell leukemia 1 (MCL-1) protein, in total lung tissue extracts. However, in contrast to gene expression, a subtle decrease in total SOCS3 protein was observed after 12 weeks of MTS exposure. CONCLUSION: Global transcriptional analysis identified a set of genes responding to MTS exposure in mouse lung. These genes returned to basal levels following smoking cessation, providing evidence to support the benefits of smoking cessation. Detailed analyses were undertaken for IL-6 and its associated pathways. Our results provide further insight into the role of these pathways in lung injury and inflammation induced by MTS.

18.
J Immunol ; 180(5): 2933-41, 2008 Mar 01.
Article in English | MEDLINE | ID: mdl-18292515

ABSTRACT

Fas death pathway is important for lymphocyte homeostasis, but the role of Fas pathway in T cell memory development is not clear. We show that whereas the expansion and contraction of CD8+ T cell response against Listeria monocytogenes were similar for wild-type (WT) and Fas ligand (FasL) mutant mice, the majority of memory CD8+ T cells in FasL mutant mice displayed an effector memory phenotype in the long-term in comparison with the mainly central memory phenotype displayed by memory CD8+ T cells in WT mice. Memory CD8+ T cells in FasL mutant mice expressed reduced levels of IFN-gamma and displayed poor homeostatic and Ag-induced proliferation. Impairment in CD8+ T cell memory in FasL mutant hosts was not due to defective programming or the expression of mutant FasL on CD8+ T cells, but was caused by perturbed cytokine environment in FasL mutant mice. Although adoptively transferred WT memory CD8+ T cells mediated protection against L. monocytogenes in either the WT or FasL mutant hosts, FasL mutant memory CD8+ T cells failed to mediate protection even in WT hosts. Thus, in individuals with mutation in Fas pathway, impairment in the function of the memory CD8+ T cells may increase their susceptibility to recurrent/latent infections.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Immunologic Memory/genetics , Mutation , fas Receptor/genetics , Animals , CD8-Positive T-Lymphocytes/microbiology , Cytotoxicity, Immunologic/genetics , Fas Ligand Protein/biosynthesis , Fas Ligand Protein/genetics , Fas Ligand Protein/physiology , Female , Genetic Predisposition to Disease , Immunophenotyping , Listeriosis/genetics , Listeriosis/immunology , Lymphoproliferative Disorders/genetics , Lymphoproliferative Disorders/immunology , Lymphoproliferative Disorders/microbiology , Mice , Mice, Inbred MRL lpr , Mice, Mutant Strains , Mice, Transgenic , Ovalbumin/biosynthesis , Ovalbumin/genetics , Ovalbumin/immunology , Recurrence , fas Receptor/biosynthesis , fas Receptor/metabolism
19.
J Immunol ; 180(9): 5853-61, 2008 May 01.
Article in English | MEDLINE | ID: mdl-18424704

ABSTRACT

CD8+ T cell memory is critical for protection against many intracellular pathogens. However, it is not clear how pathogen virulence influences the development and function of CD8+ T cells. Salmonella typhimurium (ST) is an intracellular bacterium that causes rapid fatality in susceptible mice and chronic infection in resistant strains. We have constructed recombinant mutants of ST, expressing the same immunodominant Ag OVA, but defective in various key virulence genes. We show that the magnitude of CD8+ T cell response correlates directly to the intracellular proliferation of ST. Wild-type ST displayed efficient intracellular proliferation and induced increased numbers of OVA-specific CD8+ T cells upon infection in mice. In contrast, mutants with defective Salmonella pathogenicity island II genes displayed poor intracellular proliferation and induced reduced numbers of OVA-specific CD8+ T cells. However, when functionality of the CD8+ T cell response was measured, mutants of ST induced a more functional response compared with the wild-type ST. Infection with wild-type ST, in contrast to mutants defective in pathogenicity island II genes, induced the generation of mainly effector-memory CD8+ T cells that expressed little IL-2, failed to mediate efficient cytotoxicity, and proliferated poorly in response to Ag challenge in vivo. Taken together, these results indicate that pathogens that proliferate rapidly and chronically in vivo may evoke functionally inferior memory CD8+ T cells which may promote the survival of the pathogen.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Cell Proliferation , Immunologic Memory , Interleukin-2/immunology , Salmonella Infections, Animal/immunology , Salmonella typhimurium/immunology , Animals , Bacterial Proteins/genetics , Bacterial Proteins/immunology , CD8-Positive T-Lymphocytes/pathology , Chronic Disease , Immunologic Memory/genetics , Membrane Proteins/genetics , Membrane Proteins/immunology , Mice , Salmonella Infections, Animal/genetics , Salmonella typhimurium/genetics , Salmonella typhimurium/pathogenicity , Virulence Factors/genetics , Virulence Factors/immunology
20.
J Immunol ; 179(1): 211-20, 2007 Jul 01.
Article in English | MEDLINE | ID: mdl-17579040

ABSTRACT

Regardless of the dose of Ag, Ag presentation occurs rapidly within the first few days which results in rapid expansion of the CD8+ T cell response that peaks at day 7. However, we have previously shown that this rapid priming of CD8+ T cells is absent during infection of mice with Mycobacterium bovis (bacillus Calmette-Guérin (BCG)). In this study, we have evaluated the mechanisms responsible for the delayed CD8+ T cell priming. Because BCG replicates poorly and survives within phagosomes we considered whether 1) generation of reduced amounts of Ag or 2) weaker activation by pathogen-associated molecular patterns (PAMPs) during BCG infection is responsible for the delay in CD8+ T cell priming. Using rOVA-expressing bacteria, our results indicate that infection of mice with BCG-OVA generates greatly reduced levels of OVA, which are 70-fold lower in comparison to the levels generated during infection of mice with Listeria monocytogenes-expressing OVA. Furthermore, increasing the dose of OVA, but not PAMP signaling during BCG-OVA infection resulted in rapid Ag presentation and consequent expansion of the CD8+ T cell response, indicating that the generation of reduced Ag levels, not lack of PAMP-associated inflammation, was responsible for delayed priming of CD8+ T cells. There was a strong correlation between the relative timing of Ag presentation and the increase in the level of OVA in vivo. Taken together, these results reveal that some slowly replicating pathogens, such as mycobacteria, may facilitate their chronicity by generating reduced Ag levels which causes a substantial delay in the development of acquired immune responses.


Subject(s)
Antigens, Bacterial/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/microbiology , Inflammation Mediators/physiology , Mycobacterium bovis/immunology , Animals , Antigen Presentation/immunology , BCG Vaccine/administration & dosage , BCG Vaccine/immunology , CD8-Positive T-Lymphocytes/metabolism , Cytotoxicity, Immunologic , Dose-Response Relationship, Immunologic , Female , Immunologic Memory/immunology , Inflammation Mediators/antagonists & inhibitors , Lymphocyte Activation/immunology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Ovalbumin/administration & dosage , Ovalbumin/immunology , Resting Phase, Cell Cycle/immunology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL