Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Nano Lett ; 23(9): 3872-3878, 2023 May 10.
Article in English | MEDLINE | ID: mdl-37116109

ABSTRACT

Several technologies, including photodetection, imaging, and data communication, could greatly benefit from the availability of fast and controllable conversion of terahertz (THz) light to visible light. Here, we demonstrate that the exceptional properties and dynamics of electronic heat in graphene allow for a THz-to-visible conversion, which is switchable at a sub-nanosecond time scale. We show a tunable on/off ratio of more than 30 for the emitted visible light, achieved through electrical gating using a gate voltage on the order of 1 V. We also demonstrate that a grating-graphene metamaterial leads to an increase in THz-induced emitted power in the visible range by 2 orders of magnitude. The experimental results are in agreement with a thermodynamic model that describes blackbody radiation from the electron system heated through intraband Drude absorption of THz light. These results provide a promising route toward novel functionalities of optoelectronic technologies in the THz regime.

2.
Nano Lett ; 18(12): 7919-7926, 2018 12 12.
Article in English | MEDLINE | ID: mdl-30474986

ABSTRACT

The observation of novel physical phenomena such as Hofstadter's butterfly, topological currents, and unconventional superconductivity in graphene has been enabled by the replacement of SiO2 with hexagonal boron nitride (hBN) as a substrate and by the ability to form superlattices in graphene/hBN heterostructures. These devices are commonly made by etching the graphene into a Hall-bar shape with metal contacts. The deposition of metal electrodes, the design, and specific configuration of contacts can have profound effects on the electronic properties of the devices possibly even affecting the alignment of graphene/hBN superlattices. In this work, we probe the strain configuration of graphene on hBN in contact with two types of metal contacts, two-dimensional (2D) top-contacts and one-dimensional edge-contacts. We show that top-contacts induce strain in the graphene layer along two opposing leads, leading to a complex strain pattern across the device channel. Edge-contacts, on the contrary, do not show such strain pattern. A finite-elements modeling simulation is used to confirm that the observed strain pattern is generated by the mechanical action of the metal contacts clamped to the graphene. Thermal annealing is shown to reduce the overall doping while increasing the overall strain, indicating an increased interaction between graphene and hBN. Surprisingly, we find that the two contact configurations lead to different twist-angles in graphene/hBN superlattices, which converge to the same value after thermal annealing. This observation confirms the self-locking mechanism of graphene/hBN superlattices also in the presence of strain gradients. Our experiments may have profound implications in the development of future electronic devices based on heterostructures and provide a new mechanism to induce complex strain patterns in 2D materials.

3.
Nano Lett ; 17(10): 5908-5913, 2017 10 11.
Article in English | MEDLINE | ID: mdl-28809573

ABSTRACT

As a two-dimensional semimetal, graphene offers clear advantages for plasmonic applications over conventional metals, such as stronger optical field confinement, in situ tunability, and relatively low intrinsic losses. However, the operational frequencies at which plasmons can be excited in graphene are limited by the Fermi energy EF, which in practice can be controlled electrostatically only up to a few tenths of an electronvolt. Higher Fermi energies open the door to novel plasmonic devices with unprecedented capabilities, particularly at mid-infrared and shorter-wave infrared frequencies. In addition, this grants us a better understanding of the interaction physics of intrinsic graphene phonons with graphene plasmons. Here, we present FeCl3-intercalated graphene as a new plasmonic material with high stability under environmental conditions and carrier concentrations corresponding to EF > 1 eV. Near-field imaging of this highly doped form of graphene allows us to characterize plasmons, including their corresponding lifetimes, over a broad frequency range. For bilayer graphene, in contrast to the monolayer system, a phonon-induced dipole moment results in increased plasmon damping around the intrinsic phonon frequency. Strong coupling between intrinsic graphene phonons and plasmons is found, supported by ab initio calculations of the coupling strength, which are in good agreement with the experimental data.

4.
Nanotechnology ; 28(12): 124004, 2017 Mar 24.
Article in English | MEDLINE | ID: mdl-28233763

ABSTRACT

Graphene's unique photoresponse has been largely used in a multitude of optoelectronics applications ranging from broadband photodetectors to wave-guide modulators. In this work we extend the range of applications to position-sensitive photodetectors (PSDs) using FeCl3-intercalated hexagonal domains of graphene grown by atmospheric pressure chemical vapour deposition (APCVD). The FeCl3-based chemical functionalisation of APCVD graphene crystals is affected by the presence of wrinkles and results in a non-uniform doping of the graphene layers. This doping profile creates multiple p-p+ photoactive junctions which show a linear and bipolar photoresponse with respect to the position of a focused light spot, which is ideal for the realization of a PSD. Our study paves the way towards the fabrication of flexible and transparent PSDs that could be embedded in smart textile and wearable electronics.

5.
Nano Lett ; 16(8): 4788-91, 2016 08 10.
Article in English | MEDLINE | ID: mdl-27388297

ABSTRACT

We present transport measurements on long, diffusive, graphene-based Josephson junctions. Several junctions are made on a single-domain crystal of CVD graphene and feature the same contact width of ∼9 µm but vary in length from 400 to 1000 nm. As the carrier density is tuned with the gate voltage, the critical current in these junctions ranges from a few nanoamperes up to more than 5 µA, while the Thouless energy, ETh, covers almost 2 orders of magnitude. Over much of this range, the product of the critical current and the normal resistance ICRN is found to scale linearly with ETh, as expected from theory. However, the value of the ratio ICRN/ETh is found to be 0.1-0.2, which much smaller than the predicted ∼10 for long diffusive SNS junctions.

6.
Nano Lett ; 15(7): 4429-33, 2015 Jul 08.
Article in English | MEDLINE | ID: mdl-26079989

ABSTRACT

Few layer graphene systems such as Bernal stacked bilayer and rhombohedral (ABC-) stacked trilayer offer the unique possibility to open an electric field tunable energy gap. To date, this energy gap has been experimentally confirmed in optical spectroscopy. Here we report the first direct observation of the electric field tunable energy gap in electronic transport experiments on doubly gated suspended ABC-trilayer graphene. From a systematic study of the nonlinearities in current versus voltage characteristics and the temperature dependence of the conductivity, we demonstrate that thermally activated transport over the energy-gap dominates the electrical response of these transistors. The estimated values for energy gap from the temperature dependence and from the current voltage characteristics follow the theoretically expected electric field dependence with critical exponent 3/2. These experiments indicate that high quality few-layer graphene are suitable candidates for exploring novel tunable terahertz light sources and detectors.

7.
Nano Lett ; 15(12): 7943-8, 2015 Dec 09.
Article in English | MEDLINE | ID: mdl-26619326

ABSTRACT

We report an experimental study of electron states and the resulting electronic transport properties of uniaxially strained graphene. For this study we developed a novel strain application method that is compatible with the planar device technology. We identify the value of the strain induced in graphene by Raman spectroscopy and show with atomic force microscopy that its topography consists of wrinkles up to 4 nm height aligned along the direction of the applied strain. Transport experiments reveal a broadening of the charge neutrality region and the convergence of Landau levels to multiple Dirac points in Landau-fan diagrams. These observations are consistent with large fluctuations of the scalar potential via the strain-induced wrinkles, which is experimentally observed for the first time.

8.
Nano Lett ; 14(3): 1158-63, 2014 Mar 12.
Article in English | MEDLINE | ID: mdl-24490629

ABSTRACT

Theoretical works suggest the possibility and usefulness of strain engineering of graphene by predicting remarkable properties, such as Dirac cone merging, bandgap opening and pseudo magnetic field generation. However, most of these predictions have not yet been confirmed because it is experimentally difficult to control the magnitude and type (e.g., uniaxial, biaxial, and so forth) of strain in graphene devices. Here we report two novel methods to apply strain without bending the substrate. We employ thin films of evaporated metal and organic insulator deposited on graphene, which shrink after electron beam irradiation or heat application. These methods make it possible to apply both biaxial strain and in-plane isotropic compressive strain in a well-controlled manner. Raman spectroscopy measurements show a clear splitting of the degenerate states of the G-band in the case of biaxial strain, and G-band blue shift without splitting in the case of in-plane isotropic compressive strain. In the case of biaxial strain application, we find out the ratio of the strain component perpendicular to the stretching direction is at least three times larger than what was previously observed, indicating that shrinkage of the metal or organic insulator deposited on graphene induces both tensile and compressive strain in this atomically thin material. Our studies present for the first time a viable way to apply strain to graphene without the need to bend the substrate.

9.
Nano Lett ; 14(4): 1751-5, 2014.
Article in English | MEDLINE | ID: mdl-24635686

ABSTRACT

We show the successful intercalation of large area (1 cm(2)) epitaxial few-layer graphene grown on 4H-SiC with FeCl3. Upon intercalation the resistivity of this system drops from an average value of ∼200 Ω/sq to ∼16 Ω/sq at room temperature. The magneto-conductance shows a weak localization feature with a temperature dependence typical of graphene Dirac fermions demonstrating the decoupling into parallel hole gases of each carbon layer composing the FeCl3 intercalated structure. The phase coherence length (∼1.2 µm at 280 mK) decreases rapidly only for temperatures higher than the 2D magnetic ordering in the intercalant layer while it tends to saturate for temperatures lower than the antiferromagnetic ordering between the planes of FeCl3 molecules providing the first evidence for magnetic ordering in the extreme two-dimensional limit of graphene.

10.
Proc Natl Acad Sci U S A ; 108(32): 13002-6, 2011 Aug 09.
Article in English | MEDLINE | ID: mdl-21828007

ABSTRACT

We present a comparative study of high carrier density transport in mono-, bi-, and trilayer graphene using electric double-layer transistors to continuously tune the carrier density up to values exceeding 10(14) cm(-2). Whereas in monolayer the conductivity saturates, in bi- and trilayer filling of the higher-energy bands is observed to cause a nonmonotonic behavior of the conductivity and a large increase in the quantum capacitance. These systematic trends not only show how the intrinsic high-density transport properties of graphene can be accessed by field effect, but also demonstrate the robustness of ion-gated graphene, which is crucial for possible future applications.

11.
ACS Appl Mater Interfaces ; 16(24): 31399-31406, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38836799

ABSTRACT

Layered perovskites, a novel class of two-dimensional (2D) layered materials, exhibit versatile photophysical properties of great interest in photovoltaics and optoelectronics. However, their instability to environmental factors, particularly water, has limited their utility. In this study, we introduce an innovative solution to the problem by leveraging the unique properties of natural beeswax as a protective coating of 2D-fluorinated phenylethylammonium lead iodide perovskite. These photodetectors show outstanding figures of merit, such as a responsivity of >2200 A/W and a detectivity of 2.4 × 1018 Jones. The hydrophobic nature of beeswax endows the 2D perovskite sensors with an unprecedented resilience to prolonged immersion in contaminated water, and it increases the lifespan of devices to a period longer than one year. At the same time, the biocompatibility of the beeswax and its self-cleaning properties make it possible to use the very same turbidity sensors for healthcare in photoplethysmography and monitor the human heartbeat with clear systolic and diastolic signatures. Beeswax-enabled multipurpose optoelectronics paves the way to sustainable electronics by ultimately reducing the need for multiple components.


Subject(s)
Calcium Compounds , Oxides , Titanium , Waxes , Calcium Compounds/chemistry , Titanium/chemistry , Oxides/chemistry , Waxes/chemistry , Humans , Environmental Monitoring/instrumentation , Environmental Monitoring/methods , Lead/chemistry , Lead/analysis
12.
ACS Appl Mater Interfaces ; 15(43): 50302-50311, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37862154

ABSTRACT

The electrical behavior and the photoresponse of rhenium disulfide field-effect transistors (FETs) have been widely studied; however, only a few works have investigated the photocurrent as a function of temperature. In this paper, we perform the electrical characterization of few-layer ReS2-based FETs with Cr-Au contacts over a wide temperature range. We exploit the temperature-dependent transfer and output characteristics to estimate the effective Schottky barrier at the Cr-Au/ReS2 interface and to investigate the temperature behavior of parameters, such as the threshold voltage, carrier concentration, mobility, and subthreshold swing. Through time-resolved photocurrent measurements, we show that the photocurrent increases with temperature and exhibits a linear dependence on the incident light power at both low and room temperatures and a longer rise/decay time at higher temperatures. We surmise that the photocurrent is affected by the photobolometric effect and light-induced desorption of adsorbates which are facilitated by the high temperature and the low pressure.

13.
ACS Appl Nano Mater ; 6(23): 21663-21670, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38093806

ABSTRACT

Two-dimensional rhenium disulfide (ReS2), a member of the transition-metal dichalcogenide family, has received significant attention due to its potential applications in field-effect transistors (FETs), photodetectors, and memories. In this work, we investigate the suppression of the subthreshold current during the forward voltage gate sweep, leading to an inversion of the hysteresis in the transfer characteristics of ReS2 nanosheet-based FETs from clockwise to anticlockwise. We explore the impact of temperature, sweeping gate voltage, and pressure on this behavior. Notably, the suppression in current within the subthreshold region coincides with a peak in gate current, which increases beyond a specific temperature but remains unaffected by pressure. We attribute both the suppression in drain current and the presence of peak in gate current to the charge/discharge process of gate oxide traps by thermal-assisted tunnelling. The suppression of the subthreshold current at high temperatures not only reduces power consumption but also extends the operational temperature range of ReS2 nanosheet-based FETs.

14.
Nano Lett ; 11(9): 3912-6, 2011 Sep 14.
Article in English | MEDLINE | ID: mdl-21851114

ABSTRACT

We demonstrate the possibility to selectively reduce insulating fluorinated graphene to conducting and semiconducting graphene by electron beam irradiation. Electron-irradiated fluorinated graphene microstructures show 7 orders of magnitude decrease in resistivity (from 1 TΩ to 100 kΩ), whereas nanostructures show a transport gap in the source-drain bias voltage. In this transport gap, electrons are localized, and charge transport is dominated by variable range hopping. Our findings demonstrate a step forward to all-graphene transparent and flexible electronics.

15.
Nanomaterials (Basel) ; 12(11)2022 May 31.
Article in English | MEDLINE | ID: mdl-35683748

ABSTRACT

We report the fabrication and optoelectronic characterization of field-effect transistors (FETs) based on few-layer ReSe2. The devices show n-type conduction due to the Cr contacts that form low Schottky barriers with the ReSe2 nanosheet. We show that the optoelectronic performance of these FETs is strongly affected by air pressure, and it undergoes a dramatic increase in conductivity when the pressure is lowered below the atmospheric one. Surface-adsorbed oxygen and water molecules are very effective in doping ReSe2; hence, FETs based on this two-dimensional (2D) semiconductor can be used as an effective air pressure gauge. Finally, we report negative photoconductivity in the ReSe2 channel that we attribute to a back-gate-dependent trapping of the photo-excited charges.

16.
Nanoscale ; 14(42): 15651-15662, 2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36189726

ABSTRACT

Tuning the charge transport properties of two-dimensional transition metal dichalcogenides (TMDs) is pivotal to their future device integration in post-silicon technologies. To date, co-doping of TMDs during growth still proves to be challenging, and the synthesis of doped WSe2, an otherwise ambipolar material, has been mainly limited to p-doping. Here, we demonstrate the synthesis of high-quality n-type monolayered WSe2 flakes using a solid-state precursor for Se, zinc selenide. n-Type transport has been reported with prime electron mobilities of up to 10 cm2 V-1 s-1. We also demonstrate the tuneability of doping to p-type transport with hole mobilities of 50 cm2 V-1 s-1 after annealing in air. n-Doping has been attributed to the presence of Zn adatoms on the WSe2 flakes as revealed by X-ray photoelectron spectroscopy (XPS), spatially resolved time of flight secondary ion mass spectroscopy (SIMS) and angular dark-field scanning transmission electron microscopy (AD-STEM) characterization of WSe2 flakes. Monolayer WSe2 flakes exhibit a sharp photoluminescence (PL) peak at room temperature and highly uniform emission across the entire flake area, indicating a high degree of crystallinity of the material. This work provides new insight into the synthesis of TMDs with charge carrier control, to pave the way towards post-silicon electronics.

17.
Macromol Rapid Commun ; 32(4): 371-7, 2011 Feb 16.
Article in English | MEDLINE | ID: mdl-21433186

ABSTRACT

In this communication an extended "in-out" polymerization method is presented, which leads to the synthesis of novel heteroarm star block terpolymers of the type A(n)(B-b-C)(n). A four step/one-pot synthetic procedure is pursued using anionic polymerization under an inert atmosphere. The resulted star-shaped terpolymer consists of a divinyl benzene nodule bearing pure polystyrene and poly(hexyl methacrylate)-block-poly(methyl methacrylate) diblock copolymer arms. It is shown that this kind of star terpolymers can self-assemble in the bulk forming lamellae mesophase by arm and block segregation. The mechanical properties of the terpolymer have been examined in detail. Finally, the proposed synthetic procedure can be easily employed in other controlled polymerization methods.


Subject(s)
Molecular Imprinting/methods , Nanostructures/chemistry , Polymers/chemical synthesis , Molecular Structure , Polymerization , Polymers/chemistry
18.
Nat Nanotechnol ; 16(8): 888-893, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34083771

ABSTRACT

Interlayer (IL) excitons, comprising electrons and holes residing in different layers of van der Waals bonded two-dimensional semiconductors, have opened new opportunities for room-temperature excitonic devices. So far, two-dimensional IL excitons have been realized in heterobilayers with type-II band alignment. However, the small oscillator strength of the resulting IL excitons and difficulties with producing heterostructures with definite crystal orientation over large areas have challenged the practical applicability of this design. Here, following the theoretical prediction and recent experimental confirmation of the existence of IL excitons in bilayer MoS2, we demonstrate the electrical control of such excitons up to room temperature. We find that the IL excitonic states preserve their large oscillator strength as their energies are manipulated by the electric field. We attribute this effect to the mixing of the pure IL excitons with intralayer excitons localized in a single layer. By applying an electric field perpendicular to the bilayer MoS2 crystal plane, excitons with IL character split into two peaks with an X-shaped field dependence as a clear fingerprint of the shift of the monolayer bands with respect to each other. Finally, we demonstrate the full control of the energies of IL excitons distributed homogeneously over a large area of our device.

19.
ACS Appl Mater Interfaces ; 12(49): 55134-55140, 2020 Dec 09.
Article in English | MEDLINE | ID: mdl-33232104

ABSTRACT

Tailoring of the band gap in semiconductors is essential for the development of novel devices. In standard semiconductors, this modulation is generally achieved through highly energetic ion implantation. In two-dimensional (2D) materials, the photophysical properties are strongly sensitive to the surrounding dielectric environment presenting novel opportunities through van der Waals heterostructures encompassing atomically thin high-κ dielectrics. Here, we demonstrate a giant tuning of the exciton binding energy of the monolayer WSe2 as a function of the dielectric environment. Upon increasing the average dielectric constant from 2.4 to 15, the exciton binding energy is reduced by as much as 300 meV in ambient conditions. The experimentally determined exciton binding energies are in excellent agreement with the theoretical values predicted from a Mott-Wannier exciton model with parameters derived from first-principles calculations. Finally, we show how texturing of the dielectric environment can be used to realize potential-well arrays for excitons in 2D materials, which is a first step toward exciton metamaterials.

20.
ACS Appl Mater Interfaces ; 12(26): 29861-29867, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32506900

ABSTRACT

Graphene-coated polypropylene (PP) textile fibers are presented for their use as temperature sensors. These temperature sensors show a negative thermal coefficient of resistance (TCR) in a range between 30 and 45 °C with good sensitivity and reliability and can operate at voltages as low as 1 V. The analysis of the transient response of the temperature on resistance of different types of graphene produced by chemical vapor deposition (CVD) and shear exfoliation of graphite (SEG) shows that trilayer graphene (TLG) grown on copper by CVD displays better sensitivity due to the better thickness uniformity of the film and that carbon paste provides good contact for the measurements. Along with high sensitivity, TLG on PP shows not only the best response but also better transparency, mechanical stability, and washability compared to SEG. Temperature-dependent Raman analysis reveals that the temperature has no significant effect on the peak frequency of PP and expected effect on graphene in the demonstrated temperature range. The presented results demonstrate that these flexible, lightweight temperature sensors based on TLG with a negative TCR can be easily integrated in fabrics.

SELECTION OF CITATIONS
SEARCH DETAIL