Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Publication year range
1.
Nano Lett ; 17(11): 6783-6789, 2017 11 08.
Article in English | MEDLINE | ID: mdl-28984461

ABSTRACT

The resistive switching behavior in SiOx-based phase change memory devices confined by few nanometer wide graphene nanogaps is investigated. Our experiments and analysis reveal that the switching dynamics is not only determined by the commonly observed bias voltage dependent set and reset times. We demonstrate that an internal time scale, the dead time, plays a fundamental role in the system's response to various driving signals. We associate the switching behavior with the formation of microscopically distinct SiOx amorphous and crystalline phases between the graphene electrodes. The reset transition is attributed to an amorphization process due to a voltage driven self-heating; it can be triggered at any time by appropriate voltage levels. In contrast, the formation of the crystalline ON state is conditional and only occurs after the completion of a thermally assisted structural rearrangement of the as-quenched OFF state which takes place within the dead time after a reset operation. Our results demonstrate the technological relevance of the dead time rule which enables a zero bias access of both the low and high resistance states of a phase change memory device by unipolar voltage pulses.

2.
ACS Appl Mater Interfaces ; 13(6): 7453-7460, 2021 Feb 17.
Article in English | MEDLINE | ID: mdl-33533590

ABSTRACT

In this study, the possibilities of noise tailoring in filamentary resistive switching memory devices are investigated. To this end, the resistance and frequency scaling of the low-frequency 1/f-type noise properties are studied in representative mainstream material systems. It is shown that the overall noise floor is tailorable by the proper material choice, as demonstrated by the order-of-magnitude smaller noise levels in Ta2O5 and Nb2O5 transition-metal oxide memristors compared to Ag-based devices. Furthermore, the variation of the resistance states allows orders-of-magnitude tuning of the relative noise level in all of these material systems. This behavior is analyzed in the framework of a point-contact noise model highlighting the possibility for the disorder-induced suppression of the noise contribution arising from remote fluctuators. These findings promote the design of multipurpose resistive switching units, which can simultaneously serve as analog-tunable memory elements and tunable noise sources in probabilistic computing machines.

3.
Beilstein J Nanotechnol ; 11: 92-100, 2020.
Article in English | MEDLINE | ID: mdl-31976200

ABSTRACT

Nanometer-scale resistive switching devices operated in the metallic conductance regime offer ultimately scalable and widely reconfigurable hardware elements for novel in-memory and neuromorphic computing architectures. Moreover, they exhibit high operation speed at low power arising from the ease of the electric-field-driven redistribution of only a small amount of highly mobile ionic species upon resistive switching. We investigate the memristive behavior of a so-far less explored representative of this class, the Ag/AgI material system in a point contact arrangement established by the conducting PtIr tip of a scanning probe microscope. We demonstrate stable resistive switching duty cycles and investigate the dynamical aspects of non-volatile operation in detail. The high-speed switching capabilities are explored by a custom-designed microwave setup that enables time-resolved studies of subsequent set and reset transitions upon biasing the Ag/AgI/PtIr nanojunctions with sub-nanosecond voltage pulses. Our results demonstrate the potential of Ag-based filamentary memristive nanodevices to serve as the hardware elements in high-speed neuromorphic circuits.

4.
Nanoscale ; 11(11): 4719-4725, 2019 Mar 14.
Article in English | MEDLINE | ID: mdl-30839979

ABSTRACT

The microscopic origins and technological impact of 1/f type current fluctuations in Ag based, filamentary type resistive switching devices have been investigated upon downscaling toward the ultimate single atomic limit. The analysis of the low-frequency current noise spectra revealed that the main electronic noise contribution arises from the resistance fluctuations due to internal dynamical defects of Ag nanofilaments. The resulting 0.01-1% current noise ratio, i.e. the total noise level with respect to the mean value of the current, is found to be universal: its magnitude only depends on the total resistance of the device, irrespective of the materials aspects of the surrounding solid electrolyte and of the specific filament formation procedure. Moreover, the resistance dependence of the current noise ratio also displays the diffusive to ballistic crossover, confirming that stable resistive switching operation utilizing Ag nanofilaments is not compromised even in truly atomic scale junctions by technologically impeding noise levels.

5.
Nanoscale ; 10(41): 19290-19296, 2018 Nov 07.
Article in English | MEDLINE | ID: mdl-30325385

ABSTRACT

The dynamical aspects of bipolar resistive switchings have been investigated in Nb/Nb2O5/PtIr nanojunctions. We found that the widely tuneable ON and OFF state resistances are well separated at low bias. On the other hand, the high-bias regime of the resistive switchings coincides with the onset of a high nonlinearity in the current-voltage characteristics, where the impedance of both states rapidly decreases and becomes equivalent around 50 Ω. This phenomenon enables the overriding of the RC limitations of fast switchings between higher resistance ON and OFF states. Consequently, nanosecond switching times between multiple resistance states due to subnanosecond voltage pulses are demonstrated. Moreover, this finding provides the possibility of impedance engineering by the appropriate choice of voltage signals, which facilitates that both the set and reset transitions take place in an impedance matched manner to the surrounding circuit, demonstrating the merits of ultra-fast operation of Nb2O5 based neuromorphic networks.

SELECTION OF CITATIONS
SEARCH DETAIL