Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Ann Neurol ; 94(2): 398-413, 2023 08.
Article in English | MEDLINE | ID: mdl-37186119

ABSTRACT

OBJECTIVE: Facioscapulohumeral muscular dystrophy (FSHD) is caused by abnormal de-repression of the myotoxic transcription factor DUX4. Although the transcriptional targets of DUX4 are known, the regulation of DUX4 protein and the molecular consequences of this regulation are unclear. Here, we used in vitro models of FSHD to identify and characterize DUX4 post-translational modifications (PTMs) and their impact on the toxic function of DUX4. METHODS: We immunoprecipitated DUX4 protein and performed mass spectrometry to identify PTMs. We then characterized DUX4 PTMs and potential enzyme modifiers using mutagenesis, proteomics, and biochemical assays in HEK293 and human myoblast cell lines. RESULTS: We identified 17 DUX4 amino acids with PTMs, and generated 55 DUX4 mutants designed to prevent or mimic PTMs. Five mutants protected cells against DUX4-mediated toxicity and reduced the ability of DUX4 to transactivate FSHD biomarkers. These mutagenesis results suggested that DUX4 toxicity could be counteracted by serine/threonine phosphorylation and/or inhibition of arginine methylation. We therefore sought to identify modifying enzymes that could play a role in regulating DUX4 PTMs. We found several enzymes capable of modifying DUX4 protein in vitro, and confirmed that protein kinase A (PKA) and protein arginine methyltransferase (PRMT1) interact with DUX4. INTERPRETATION: These results support that DUX4 is regulated by PTMs and set a foundation for developing FSHD drug screens based mechanistically on DUX4 PTMs and modifying enzymes. ANN NEUROL 2023;94:398-413.


Subject(s)
Muscular Dystrophy, Facioscapulohumeral , Humans , Gene Expression Regulation , HEK293 Cells , Homeodomain Proteins/genetics , Muscle, Skeletal/metabolism , Muscular Dystrophy, Facioscapulohumeral/genetics , Protein Processing, Post-Translational , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/metabolism , Repressor Proteins/metabolism
2.
RNA ; 21(10): 1790-806, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26276802

ABSTRACT

In Staphylococcus aureus, a T-box riboswitch exists upstream of the glyS gene to regulate transcription of the sole glycyl-tRNA synthetase, which aminoacylates five tRNA(Gly) isoacceptors bearing GCC or UCC anticodons. Subsequently, the glycylated tRNAs serve as substrates for decoding glycine codons during translation, and also as glycine donors for exoribosomal synthesis of pentaglycine peptides during cell wall formation. Probing of the predicted T-box structure revealed a long stem I, lacking features previously described for similar T-boxes. Moreover, the antiterminator stem includes a 42-nt long intervening sequence, which is staphylococci-specific. Finally, the terminator conformation adopts a rigid two-stem structure, where the intervening sequence forms the first stem followed by the second stem, which includes the more conserved residues. Interestingly, all five tRNA(Gly) isoacceptors interact with S. aureus glyS T-box with different binding affinities and they all induce transcription readthrough at different levels. The ability of both GCC and UCC anticodons to interact with the specifier loop indicates ambiguity during the specifier triplet reading, similar to the unconventional reading of glycine codons during protein synthesis. The S. aureus glyS T-box structure is consistent with the recent crystallographic and NMR studies, despite apparent differences, and highlights the phylogenetic variability of T-boxes when studied in a genome-dependent context. Our data suggest that the S. aureus glyS T-box exhibits differential tRNA selectivity, which possibly contributes toward the regulation and synchronization of ribosomal and exoribosomal peptide synthesis, two essential but metabolically unrelated pathways.


Subject(s)
Proteins/metabolism , RNA, Transfer, Gly/metabolism , Riboswitch , Base Sequence , Molecular Sequence Data , Nucleic Acid Conformation , RNA, Transfer, Gly/chemistry , Sequence Homology, Nucleic Acid , Staphylococcus aureus/genetics , Transcription, Genetic
3.
Proc Natl Acad Sci U S A ; 110(31): 12756-61, 2013 Jul 30.
Article in English | MEDLINE | ID: mdl-23858450

ABSTRACT

T-box riboswitches control transcription of downstream genes through the tRNA-binding formation of terminator or antiterminator structures. Previously reported T-boxes were described as single-specificity riboswitches that can bind specific tRNA anticodons through codon-anticodon interactions with the nucleotide triplet of their specifier loop (SL). However, the possibility that T-boxes might exhibit specificity beyond a single tRNA had been overlooked. In Clostridium acetobutylicum, the T-box that regulates the operon for the essential tRNA-dependent transamidation pathway harbors a SL with two potential overlapping codon positions for tRNA(Asn) and tRNA(Glu). To test its specificity, we performed extensive mutagenic, biochemical, and chemical probing analyses. Surprisingly, both tRNAs can efficiently bind the SL in vitro and in vivo. The dual specificity of the T-box is allowed by a single base shift on the SL from one overlapping codon to the next. This feature allows the riboswitch to sense two tRNAs and balance the biosynthesis of two amino acids. Detailed genomic comparisons support our observations and suggest that "flexible" T-box riboswitches are widespread among bacteria, and, moreover, their specificity is dictated by the metabolic interconnection of the pathways under control. Taken together, our results support the notion of a genome-dependent codon ambiguity of the SLs. Furthermore, the existence of two overlapping codons imposes a unique example of tRNA-dependent regulation at the transcriptional level.


Subject(s)
Anticodon/metabolism , Clostridium acetobutylicum/metabolism , RNA, Bacterial/metabolism , RNA, Transfer, Asn/metabolism , RNA, Transfer, Glu/metabolism , Riboswitch/physiology , Anticodon/chemistry , Anticodon/genetics , Asparagine/biosynthesis , Asparagine/genetics , Clostridium acetobutylicum/chemistry , Clostridium acetobutylicum/genetics , Glutamic Acid/biosynthesis , Glutamic Acid/genetics , RNA, Bacterial/chemistry , RNA, Bacterial/genetics , RNA, Transfer, Asn/chemistry , RNA, Transfer, Asn/genetics , RNA, Transfer, Glu/chemistry , RNA, Transfer, Glu/genetics
4.
J Biol Chem ; 287(24): 20382-94, 2012 Jun 08.
Article in English | MEDLINE | ID: mdl-22505715

ABSTRACT

Analysis of the Gram-positive Clostridium acetobutylicum genome reveals an inexplicable level of redundancy for the genes putatively involved in asparagine (Asn) and Asn-tRNA(Asn) synthesis. Besides a duplicated set of gatCAB tRNA-dependent amidotransferase genes, there is a triplication of aspartyl-tRNA synthetase genes and a duplication of asparagine synthetase B genes. This genomic landscape leads to the suspicion of the incoherent simultaneous use of the direct and indirect pathways of Asn and Asn-tRNA(Asn) formation. Through a combination of biochemical and genetic approaches, we show that C. acetobutylicum forms Asn and Asn-tRNA(Asn) by tRNA-dependent amidation. We demonstrate that an entire transamidation pathway composed of aspartyl-tRNA synthetase and one set of GatCAB genes is organized as an operon under the control of a tRNA(Asn)-dependent T-box riboswitch. Finally, our results suggest that this exceptional gene redundancy might be interconnected to control tRNA-dependent Asn synthesis, which in turn might be involved in controlling the metabolic switch from acidogenesis to solventogenesis in C. acetobutylicum.


Subject(s)
Asparagine/biosynthesis , Aspartate-Ammonia Ligase/biosynthesis , Bacterial Proteins/biosynthesis , Clostridium acetobutylicum/metabolism , RNA, Bacterial/metabolism , RNA, Transfer, Amino Acyl/biosynthesis , Riboswitch/physiology , Asparagine/genetics , Aspartate-Ammonia Ligase/genetics , Bacterial Proteins/genetics , Clostridium acetobutylicum/genetics , RNA, Bacterial/genetics , RNA, Transfer, Amino Acyl/genetics
5.
FEBS Lett ; 596(20): 2644-2658, 2022 10.
Article in English | MEDLINE | ID: mdl-35662006

ABSTRACT

DUX4 is a transcription factor required during early embryonic development in placental mammals. In this work, we provide evidence that DUX4 is a co-repressor of nuclear receptors (NRs) of progesterone (PR) and glucocorticoids (GR). The DUX4 C-ter and N-ter regions, including the nuclear localization signals and homeodomain motifs, contribute to the co-repressor activity of DUX4 on PR and GR. Immunoprecipitation studies, using total protein extracts of cells expressing tagged versions of DUX4 and GR, support that these proteins are physically associated. Our studies suggest that DUX4 could modulate gene expression by co-regulating the activity of hormone NRs. This is the first report highlighting a potential endocrine role for DUX4.


Subject(s)
Muscular Dystrophy, Facioscapulohumeral , Female , Pregnancy , Animals , Muscular Dystrophy, Facioscapulohumeral/genetics , Muscular Dystrophy, Facioscapulohumeral/metabolism , Glucocorticoids , Progesterone , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Co-Repressor Proteins , Receptors, Glucocorticoid/genetics , Nuclear Localization Signals , Placenta/metabolism , Transcription Factors , Receptors, Cytoplasmic and Nuclear , Mammals
6.
Nat Commun ; 12(1): 7128, 2021 12 08.
Article in English | MEDLINE | ID: mdl-34880230

ABSTRACT

Facioscapulohumeral muscular dystrophy (FSHD) is a potentially devastating myopathy caused by de-repression of the DUX4 gene in skeletal muscles. Effective therapies will likely involve DUX4 inhibition. RNA interference (RNAi) is one powerful approach to inhibit DUX4, and we previously described a RNAi gene therapy to achieve DUX4 silencing in FSHD cells and mice using engineered microRNAs. Here we report a strategy to direct RNAi against DUX4 using the natural microRNA miR-675, which is derived from the lncRNA H19. Human miR-675 inhibits DUX4 expression and associated outcomes in FSHD cell models. In addition, miR-675 delivery using gene therapy protects muscles from DUX4-associated death in mice. Finally, we show that three known miR-675-upregulating small molecules inhibit DUX4 and DUX4-activated FSHD biomarkers in FSHD patient-derived myotubes. To our knowledge, this is the first study demonstrating the use of small molecules to suppress a dominant disease gene using an RNAi mechanism.


Subject(s)
Gene Expression Regulation/drug effects , Homeodomain Proteins/drug effects , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , MicroRNAs/genetics , MicroRNAs/pharmacology , Muscular Dystrophy, Facioscapulohumeral/drug therapy , Adult , Aged , Animals , Cell Death/drug effects , Disease Models, Animal , Drug Delivery Systems , Female , Genetic Therapy , HEK293 Cells , Humans , Mice , Mice, Inbred C57BL , MicroRNAs/metabolism , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscular Diseases , Muscular Dystrophy, Facioscapulohumeral/pathology , Open Reading Frames/drug effects , RNA Interference
7.
Mol Ther Methods Clin Dev ; 8: 121-130, 2018 Mar 16.
Article in English | MEDLINE | ID: mdl-29387734

ABSTRACT

RNAi emerged as a prospective molecular therapy nearly 15 years ago. Since then, two major RNAi platforms have been under development: oligonucleotides and gene therapy. Oligonucleotide-based approaches have seen more advancement, with some promising therapies that may soon reach market. In contrast, vector-based approaches for RNAi therapy have remained largely in the pre-clinical realm, with limited clinical safety and efficacy data to date. We are developing a gene therapy approach to treat the autosomal-dominant disorder facioscapulohumeral muscular dystrophy. Our strategy involves silencing the myotoxic gene DUX4 using adeno-associated viral vectors to deliver targeted microRNA expression cassettes (miDUX4s). We previously demonstrated proof of concept for this approach in mice, and we are now taking additional steps here to assess safety issues related to miDUX4 overexpression and sequence-specific off-target silencing. In this study, we describe improvements in vector design and expansion of our miDUX4 sequence repertoire and report differential toxicity elicited by two miDUX4 sequences, of which one was toxic and the other was not. This study provides important data to help advance our goal of translating RNAi gene therapy for facioscapulohumeral muscular dystrophy.

8.
JCI Insight ; 3(22)2018 11 15.
Article in English | MEDLINE | ID: mdl-30429376

ABSTRACT

Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant or digenic disorder linked to derepression of the toxic DUX4 gene in muscle. There is currently no pharmacological treatment. The emergence of DUX4 enabled development of cell and animal models that could be used for basic and translational research. Since DUX4 is toxic, animal model development has been challenging, but progress has been made, revealing that tight regulation of DUX4 expression is critical for creating viable animals that develop myopathy. Here, we report such a model - the tamoxifen-inducible FSHD mouse model called TIC-DUX4. Uninduced animals are viable, born in Mendelian ratios, and overtly indistinguishable from WT animals. Induced animals display significant DUX4-dependent myopathic phenotypes at the molecular, histological, and functional levels. To demonstrate the utility of TIC-DUX4 mice for therapeutic development, we tested a gene therapy approach aimed at improving muscle strength in DUX4-expressing muscles using adeno-associated virus serotype 1.Follistatin (AAV1.Follistatin), a natural myostatin antagonist. This strategy was not designed to modulate DUX4 but could offer a mechanism to improve muscle weakness caused by DUX4-induced damage. AAV1.Follistatin significantly increased TIC-DUX4 muscle mass and strength even in the presence of DUX4 expression, suggesting that myostatin inhibition may be a promising approach to treat FSHD-associated weakness. We conclude that TIC-DUX4 mice are a relevant model to study DUX4 toxicity and, importantly, are useful in therapeutic development studies for FSHD.


Subject(s)
Disease Models, Animal , Follistatin/genetics , Genetic Therapy , Homeodomain Proteins/genetics , Muscular Dystrophy, Facioscapulohumeral/therapy , Myostatin/antagonists & inhibitors , Animals , Female , Follistatin/therapeutic use , Male , Mice, Transgenic , Muscular Dystrophy, Facioscapulohumeral/chemically induced , Muscular Dystrophy, Facioscapulohumeral/genetics , Phenotype , Tamoxifen
SELECTION OF CITATIONS
SEARCH DETAIL