Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
1.
Mol Divers ; 26(2): 1213-1225, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34553298

ABSTRACT

Diabetes mellitus is a main global health apprehension. Macrovascular illnesses, neuropathy, retinopathy, and nephropathy are considered some of its severe hitches. Gliptins are a group of hypoglycemic agents that inhibit dipeptidyl peptidase-IV (DPP-IV) enzyme and support blood glucose-lowering effect of incretins. In the current research, synthesis, characterization, docking, and biological evaluation of fourteen Schiff's bases 5a-f and 9a-h were carried out. Compound 9f revealed the best in vitro anti-DPP-IV activity of 35.7% inhibition at a concentration of 100 µM. Compounds 9c and 9f with the highest in vitro DPP-IV inhibition were subjected to the in vivo glucose-lowering test using vildagliptin as a positive inhibitor. Vildagliptin, 9c, and 9f showed significant reduction in the blood glucose levels of the treated mice after 30 min of glucose administration. Moreover, induced fit docking showed that these derivatives accommodated the enzyme binding site with comparable docking scores. Schiff's bases can serve as promising lead for the development of new DPP-IV inhibitors.


Subject(s)
Diabetes Mellitus, Type 2 , Dipeptidyl-Peptidase IV Inhibitors , Animals , Blood Glucose , Diabetes Mellitus, Type 2/metabolism , Dipeptidyl Peptidase 4/chemistry , Dipeptidyl-Peptidase IV Inhibitors/chemistry , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Hypoglycemic Agents/chemistry , Mice , Vildagliptin
2.
Molecules ; 27(9)2022 Apr 30.
Article in English | MEDLINE | ID: mdl-35566238

ABSTRACT

Lung cancer is one of the most common causes of cancer-related deaths worldwide. Monoamine Oxidase-A (MAO-A) enzyme mediates the production of reactive oxygen species (ROS) that trigger DNA damage and oxidative injury of cells resulting in tumor initiation and progression. Available MAO-A inhibitors are used as antidepressants, however, their role as anticancer agents is still under investigation. Ligand- and structure-based drug design approaches guided the discovery and development of novel MAO-A inhibitors. A series of 1H indole-2-carboxamide derivatives was prepared and characterized using 1H-NMR, 13C-NMR, and IR. The antiproliferative effects of MAO-A inhibitors were evaluated using the cell viability assay (MTT), and MAO-A activity was evaluated using MAO-A activity assay. The presumed inhibitors significantly inhibited the growth of lung cell lines in a dose- and time dependent manner. The half maximal inhibitory concentration (IC50) values of MAO-A inhibitors (S1, S2, S4, S7, and S10) were 33.37, 146.1, 208.99, 307.7, and 147.2 µM, respectively, in A549. Glide docking against MAO-A showed that the derivatives accommodate MAO-A binding cleft and engage with key binding residues. MAO-A inhibitors provide significant and consistent evidence on MAO-A activity in lung cancer and present a potential target for the development of new chemotherapeutic agents.


Subject(s)
Antineoplastic Agents , Lung Neoplasms , Antidepressive Agents/pharmacology , Antineoplastic Agents/pharmacology , Humans , Lung Neoplasms/drug therapy , Molecular Docking Simulation , Monoamine Oxidase/metabolism , Monoamine Oxidase Inhibitors/chemistry , Structure-Activity Relationship
3.
Molecules ; 26(19)2021 Oct 04.
Article in English | MEDLINE | ID: mdl-34641563

ABSTRACT

Monoamine oxidases (MAOs) are oxidative enzymes that catalyze the conversion of biogenic amines into their corresponding aldehydes and ketones through oxidative deamination. Owing to the crucial role of MAOs in maintaining functional levels of neurotransmitters, the implications of its distorted activity have been associated with numerous neurological diseases. Recently, an unanticipated role of MAOs in tumor progression and metastasis has been reported. The chemical inhibition of MAOs might be a valuable therapeutic approach for cancer treatment. In this review, we reported computational approaches exploited in the design and development of selective MAO inhibitors accompanied by their biological activities. Additionally, we generated a pharmacophore model for MAO-A active inhibitors to identify the structural motifs to invoke an activity.


Subject(s)
Monoamine Oxidase Inhibitors/therapeutic use , Neoplasms/enzymology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Computational Biology , Drug Design , Drug Development , Humans , Monoamine Oxidase , Monoamine Oxidase Inhibitors/pharmacology , Neoplasms/drug therapy , Quantitative Structure-Activity Relationship
4.
Int J Mol Sci ; 21(9)2020 May 08.
Article in English | MEDLINE | ID: mdl-32397063

ABSTRACT

Conjugating drugs with gold nanoparticles (GNP) is a key strategy in cancer therapy. Herein, the potential inhibition of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway, and other pathways of the MCF-7 cell-line, was investigated upon treatment with gold nanorods (GNR) conjugated with a PI3K inhibitor drug. The results revealed that the coupling of GNR with the drug drastically modulated the expression of PI3Kα at the gene and protein levels compared to the drug or GNR alone. The PI3Kα pathway is involved in tumor progression and development through the mediation of different mechanisms such as apoptosis, proliferation, and DNA damage. Treatment with the nanocomplex significantly affected the gene expression of several transcription factors responsible for cell growth and proliferation, apoptotic pathways, and cell cycle arrest. Furthermore, the gene expression of different regulatory proteins involved in cancer progression and immune responses were significantly modified upon treatment with the nanocomplex compared to the free drug or GNR alone.


Subject(s)
Breast Neoplasms/drug therapy , Gold/therapeutic use , Metal Nanoparticles/chemistry , Nanotubes/chemistry , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Quinolines/pharmacology , Breast Neoplasms/pathology , Female , Forkhead Box Protein O1/metabolism , Forkhead Box Protein O3/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Gene Expression Regulation, Neoplastic/genetics , Gold/chemistry , Humans , I-kappa B Proteins/metabolism , MCF-7 Cells , Metal Nanoparticles/therapeutic use , NF-kappa B/metabolism , Oligonucleotide Array Sequence Analysis , Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins c-akt/genetics , Signal Transduction/drug effects , Signal Transduction/genetics
5.
Molecules ; 26(1)2020 Dec 25.
Article in English | MEDLINE | ID: mdl-33375766

ABSTRACT

Cancer is a multifactorial disease and the second leading cause of death worldwide. Diverse factors induce carcinogenesis, such as diet, smoking, radiation, and genetic defects. The phosphatidylinositol 3-kinase (PI3Kα) has emerged as an attractive target for anticancer drug design. Eighteen derivatives of N-phenyl-6-chloro-4-hydroxy-2-quinolone-3-carboxamide were synthesized and characterized using FT-IR, NMR (1H and 13C), and high-resolution mass spectra (HRMS). The series exhibited distinct antiproliferative activity (IC50 µM) against human epithelial colorectal adenocarcinoma (Caco-2) and colon carcinoma (HCT-116) cell lines, respectively: compounds 16 (37.4, 8.9 µM), 18 (50.9, 3.3 µM), 19 (17.0, 5.3 µM), and 21 (18.9, 4.9 µM). The induced-fit docking (IFD) studies against PI3Kαs showed that the derivatives occupy the PI3Kα binding site and engage with key binding residues.


Subject(s)
Amides/chemistry , Neoplasms/drug therapy , Transcription Factors/genetics , Amides/chemical synthesis , Amides/pharmacology , Caco-2 Cells , Drug Screening Assays, Antitumor , Gene Expression Regulation, Neoplastic/drug effects , HCT116 Cells , Humans , Molecular Docking Simulation , Quinolones/chemistry , Quinolones/pharmacology
6.
Molecules ; 25(22)2020 Nov 16.
Article in English | MEDLINE | ID: mdl-33207767

ABSTRACT

The emergence of phosphatidylinositol 3-kinase (PI3Kα) in cancer development has accentuated its significance as a potential target for anticancer drug design. Twenty one derivatives of N-phenyl-4-hydroxy-6-methyl-2-quinolone-3-carboxamide were synthesized and characterized using NMR (1H and 13C) and HRMS. The derivatives displayed inhibitory activity against human epithelial colorectal adenocarcinoma (Caco-2) and human colon cancer (HCT-116) cell lines: compounds 8 (IC50 Caco-2 = 98 µM, IC50 HCT-116 = 337 µM) and 16 (IC50 Caco-2 = 13 µM, IC50 HCT-116 = 240.2 µM). Results showed that compound 16 significantly affected the gene encoding AKT, BAD, and PI3K. The induced-fit docking (IFD) studies against PI3Kα demonstrated that the scaffold accommodates the kinase domains and forms H-bonds with significant binding residues.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Models, Molecular , Quinolones/chemical synthesis , Quinolones/pharmacology , Antineoplastic Agents/chemistry , Caco-2 Cells , Gene Expression Regulation, Neoplastic/drug effects , HCT116 Cells , Humans , Inhibitory Concentration 50 , Molecular Docking Simulation , Phosphatidylinositol 3-Kinases/chemistry , Phosphatidylinositol 3-Kinases/metabolism , Principal Component Analysis , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Quinolones/chemistry
7.
Mol Cell Biochem ; 458(1-2): 39-47, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30905023

ABSTRACT

The development of new antihyperlipidemic agents with higher potency and lower side effects is of high priority. In this study, 1,3,4 thiadiazole Schiff base derivatives were synthesized as potential peroxisome proliferation-activated receptor-α (PPARα) agonists and characterized using elemental analysis, FTIR, 1H-NMR, 13C-NMR and mass spectroscopy and then tested for their hypolipidemic activity in Triton WR-1339-induced acute hyperlipidemic rat model in comparison with bezafibrate. The compounds showed significant hypolipidemic activity. Induced fit docking showed that the compounds are potential activators of PPARα with binding scores - 8.00 Kcal/mol for 2,5-bis(4-hydroxybenzylidenamino)-1,3,4-thiadiazole. PCR array analysis showed an increase in the expression of several genes involved in lipid metabolism through mitochondrial fatty acid ß oxidation and are part of PPARα signaling pathway including Acsm3, Fabp4 and Hmgcs1. Gene expression of Lrp12 and Lrp1b involved in LDL uptake by liver cells and Cyp7a1 involved in cholesterol catabolism were also found to be upregulated.


Subject(s)
Hyperlipidemias/drug therapy , Hypolipidemic Agents , PPAR alpha/agonists , Thiadiazoles , Acute Disease , Animals , Disease Models, Animal , Gene Expression Regulation/drug effects , Hyperlipidemias/metabolism , Hyperlipidemias/pathology , Hypolipidemic Agents/chemistry , Hypolipidemic Agents/pharmacokinetics , Hypolipidemic Agents/pharmacology , Male , PPAR alpha/metabolism , Rats , Rats, Sprague-Dawley , Signal Transduction/drug effects , Thiadiazoles/chemistry , Thiadiazoles/pharmacokinetics , Thiadiazoles/pharmacology
8.
Biotechnol Appl Biochem ; 66(3): 434-444, 2019 May.
Article in English | MEDLINE | ID: mdl-30801842

ABSTRACT

Ponicidin, an ent-kaurane diterpenoid derived from Rabdosia rubescens, exhibits antitumor activities against several types of cancers. This review summarizes the botanical sources, biological activities, and biopharmaceutical profile of ponicidin. Additionally, a molecular docking study has been undertaken to correlate the interaction of this diterpenoid with biomacromolecules found in the literature. For this purpose, an up-to-date (till December 2018) literature survey was conducted using a number of databases such as PubMed, Science Direct, Web of Science, Scopus, the American Chemical Society, Clinicaltrials.gov, and Google Scholar. Findings suggest that ponicidin exerts antioxidant and anticancer activity in various test systems, including experimental animals and cultured cancer cells. Research findings revealed that anticancer mechanisms of ponicidin include antioxidant/oxidative stress induction, cytotoxic, apoptotic inductive, chemosensitizer, antiangiogenic, and antiproliferative effects. In silico study suggests that 5ITD (PI3K) was the best protein with which ponicidin interacts to exert its anticancer effect. In conclusion, ponicidin might be a promising plant-derived cancer chemotherapeutic agent.


Subject(s)
Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Antioxidants/pharmacology , Diterpenes/pharmacology , Molecular Docking Simulation , Protein Kinase Inhibitors/pharmacology , Antineoplastic Agents, Phytogenic/isolation & purification , Antioxidants/chemistry , Antioxidants/isolation & purification , Apoptosis/drug effects , Binding Sites/drug effects , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Diterpenes/chemistry , Diterpenes/isolation & purification , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Isodon/chemistry , Molecular Conformation , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/isolation & purification , Structure-Activity Relationship
9.
Chem Pharm Bull (Tokyo) ; 66(10): 953-958, 2018.
Article in English | MEDLINE | ID: mdl-30270241

ABSTRACT

A new series of imidazole-5-carboxamide derivatives were prepared and tested for their anti-hyperlipidemic activity in Triton-WR-1339-induced hyperlipidemic Wistar rats. The purpose of this research was to improve benzophenone carboxamides water solubility maintaining at the same time the antihyperlipidemic activity. Compounds 4, 6, 10, and 11 were synthesized through a coupling reaction between imidazoles-5-carbonyl chloride and amino benzophenones. The tested animals (n=48) were divided into six groups: the first group (hyperlipidemic control group; HCG) received an intraperitoneal injection (i.p.) of (300 mg/kg) Triton WR-1339. The second group received i.p. injection of Triton WR-1339 followed by an intra-gastric administration of bezafibrate (100 mg/kg) (bezafibrate; BF). The third, fourth, fifth, and sixth groups received i.p. injection of Triton WR-1339 followed by an intra-gastric administration of (30 mg/kg) of compounds 4, 6, 10, and 11, respectively. At a dose of 30 mg/kg body weight compounds 4, 6, 10, and 11 significantly (p<0.0001) decreased the plasma level of triglyceride (TG), low-density lipoprotein (LDL) and total cholesterol (TC) levels after 18 h of treatment. Additionally, compounds 4, 6, 11 and bezafibrate (100 mg/kg) significantly (p<0.0001) increased the plasma level of high-density lipoprotein (HDL) levels, which is known for its preventive role against atherogenesis. These results demonstrate the possibility of pharmacokinetic properties improvement maintaining the biological and pharmacological profile of these compounds.


Subject(s)
Hyperlipidemias/drug therapy , Hypolipidemic Agents/therapeutic use , Imidazoles/therapeutic use , Lipids/chemistry , Animals , Hyperlipidemias/chemically induced , Hypolipidemic Agents/chemical synthesis , Hypolipidemic Agents/chemistry , Imidazoles/chemical synthesis , Imidazoles/chemistry , Intubation, Gastrointestinal , Lipoproteins, HDL/blood , Male , Molecular Structure , Polyethylene Glycols/administration & dosage , Rats , Rats, Wistar , Solubility
10.
Arch Pharm (Weinheim) ; 350(12)2017 Dec.
Article in English | MEDLINE | ID: mdl-29112287

ABSTRACT

Cardiovascular disease is the most common cause for mortality and morbidity in the developed world; its risk is inversely related to the high-density lipoprotein (HDL) cholesterol levels. Therefore, there is a great interest in developing new cholesteryl ester transfer protein (CETP) inhibitors capable of raising HDL as a novel approach for the prevention of cardiovascular disease. Herein, the synthesis and characterization of ten benzyl benzamides 8a-j that aim at CETP inhibition was performed. The in vitro CETP inhibition bioassay revealed that benzamide 8j had the best activity, with a percent inhibition of 82.2% at 10 µM concentration and an IC50 value of 1.3 µM. The docking study shows that the verified compounds accommodate the binding cleft of CETP and are enclosed by a hydrophobic lining. Furthermore, the scaffold of 8a-j matches the pharmacophoric points of CETP inhibitors, particularly in its hydrophobic and aromatic functionalities.


Subject(s)
Anticholesteremic Agents/pharmacology , Benzamides/pharmacology , Cholesterol Ester Transfer Proteins/antagonists & inhibitors , Models, Molecular , Anticholesteremic Agents/chemical synthesis , Anticholesteremic Agents/chemistry , Benzamides/chemical synthesis , Benzamides/chemistry , Cardiovascular Diseases/etiology , Cardiovascular Diseases/prevention & control , Cholesterol, HDL/blood , Drug Design , Humans , Hydrophobic and Hydrophilic Interactions , Inhibitory Concentration 50 , Molecular Docking Simulation , Structure-Activity Relationship
11.
Bioorg Med Chem Lett ; 26(11): 2685-90, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27084677

ABSTRACT

Structure-based drug design and molecular modeling were employed to identify a new series of indole-2-carboxamides as potential anticancer agents. These compounds were synthesized and characterized with the aid of several spectroscopic techniques, such as FT-IR, NMR, and mass spectrometry as well as by elemental analysis. Molecular docking studies confirmed that the newly synthesized compounds accommodate PI3Kα and EGFR kinase catalytic sites and form H-bonding with the key binding residues. The antitumor activity of these new compounds against an array of cancer cell lines (human colon carcinoma (HCT116), leukemia (K562), and breast cancer (MDA231) was evaluated. Results revealed that these compounds were selective against the kinase domain, and none of them showed any inhibitory activity against K562. In addition, results showed that compound 13 exhibited high potency in HCT116 and MDA231 with IC50 values of 19 and 15µM, respectively. Our findings recommend that further optimization of this series would be beneficial for colon and breast cancer treatment.


Subject(s)
Antineoplastic Agents/pharmacology , Computer-Aided Design , ErbB Receptors/antagonists & inhibitors , Indoles/pharmacology , Phosphoinositide-3 Kinase Inhibitors , Protein Kinase Inhibitors/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Class I Phosphatidylinositol 3-Kinases , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , ErbB Receptors/metabolism , Humans , Indoles/chemical synthesis , Indoles/chemistry , Models, Molecular , Molecular Structure , Phosphatidylinositol 3-Kinases/metabolism , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship
12.
Bioorg Med Chem Lett ; 25(16): 3120-4, 2015 Aug 15.
Article in English | MEDLINE | ID: mdl-26099539

ABSTRACT

The oncogenic potential of phosphatidylinositol 3-kinase (PI3Kα) has made it an attractive target for anticancer drug design. In this work, we describe our efforts to optimize the lead PI3Kα inhibitor 2-hydroxy-1,2-diphenylethanone (benzoin). A series of 2-oxo-1,2-diphenylethyl benzoate analogs were identified as potential PI3Kα inhibitors. Docking studies confirmed that the aromatic interaction is mediating ligand/protein complex formation and identified Lys802 and Val851 as H-bonding key residues. Our biological data in human colon carcinoma HCT116 showed that the structure analogs inhibited cell proliferation and induced apoptosis.


Subject(s)
Antineoplastic Agents/chemical synthesis , Benzoin/analogs & derivatives , Phosphoinositide-3 Kinase Inhibitors , Protein Kinase Inhibitors/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Benzoin/chemical synthesis , Benzoin/pharmacology , Binding Sites , Cell Proliferation/drug effects , Drug Design , HCT116 Cells , Humans , Molecular Docking Simulation , Phosphatidylinositol 3-Kinases/metabolism , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Structure, Tertiary
13.
Expert Opin Ther Pat ; 34(1-2): 51-69, 2024.
Article in English | MEDLINE | ID: mdl-38450537

ABSTRACT

INTRODUCTION: Recent years have seen significant strides in drug developmenttargeting the EGFR/RAS/RAF signaling pathway which is critical forcell growth and proliferation. Protein-protein interaction networksamong EGFR, RAS, and RAF proteins offer insights for drug discovery. This review discusses the drug design and development efforts ofinhibitors targeting these proteins over the past 3 years, detailingtheir structures, selectivity, efficacy, and combination therapy.Strategies to combat drug resistance and minimize toxicities areexplored, along with future research directions. AREA COVERED: This review encompasses clinical trials and patents on EGFR, KRAS,and BRAF inhibitors from 2020 to 2023, including advancements indesign and synthesis of proteolysis targeting chimeras (PROTACs) forprotein degradation. EXPERT OPINION: To tackle drug resistance, designing allosteric fourth-generationEGFR inhibitors is vital. Covalent, allosteric, or combinationaltherapies, along with PROTAC degraders, are key methods to addressresistance and toxicity in KRAS and BRAF inhibitors.


Subject(s)
Proto-Oncogene Proteins B-raf , Proto-Oncogene Proteins p21(ras) , Humans , Proto-Oncogene Proteins B-raf/metabolism , Patents as Topic , Signal Transduction , ErbB Receptors , Mutation , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use
14.
Expert Opin Ther Pat ; 34(3): 141-158, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38557273

ABSTRACT

INTRODUCTION: Recent years have witnessed great achievements in drug design and development targeting the phosphatidylinositol 3-kinase/protein kinase-B (PI3K/AKT) signaling pathway, a pathway central to cell growth and proliferation. The nearest neighbor protein-protein interaction networks for PI3K and AKT show the interplays between these target proteins which can be harnessed for drug discovery. In this review, we discuss the drug design and clinical development of inhibitors of PI3K/AKT in the past three years. We review in detail the structures, selectivity, efficacy, and combination therapy of 35 inhibitors targeting these proteins, classified based on the target proteins. Approaches to overcoming drug resistance and to minimizing toxicities are discussed. Future research directions for developing combinational therapy and PROTACs of PI3K and AKT inhibitors are also discussed. AREA COVERED: This review covers clinical trial reports and patent literature on inhibitors of PI3K and AKT published between 2020 and 2023. EXPERT OPINION: To address drug resistance and drug toxicity of inhibitors of PI3K and AKT, it is highly desirable to design and develop subtype-selective PI3K inhibitors or subtype-selective AKT1 inhibitors to minimize toxicity or to develop allosteric drugs that can form covalent bonds. The development of PROTACs of PI3Kα or AKT helps to reduce off-target toxicities.


Subject(s)
Antineoplastic Agents , Drug Design , Drug Development , Neoplasms , Patents as Topic , Phosphoinositide-3 Kinase Inhibitors , Protein Kinase Inhibitors , Proto-Oncogene Proteins c-akt , Signal Transduction , Humans , Signal Transduction/drug effects , Antineoplastic Agents/pharmacology , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Animals , Neoplasms/drug therapy , Neoplasms/pathology , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Drug Resistance, Neoplasm , Phosphatidylinositol 3-Kinases/metabolism , Cell Proliferation/drug effects , Molecular Targeted Therapy
15.
Curr Top Med Chem ; 23(27): 2552-2589, 2023.
Article in English | MEDLINE | ID: mdl-37622697

ABSTRACT

Vaccines are instrumental tools to fight against novel and re-emerging pathogens and curb pandemics. Vaccination has been an integral part of the multifaceted public health response to the COVID-19 pandemic. Diverse vaccine platforms have been designed and are currently at different stages of development. Some vaccines are still in early biological testing, while others have been launched after being approved by regulatory agencies worldwide. Genomic vaccines that deliver parts of the viral DNA or RNA to host cells have gained popularity recently due to their high efficiency and fast manufacture. Furthermore, recent clinical studies encouraged the use of different vaccine platforms within the primary vaccination course to enhance the efficacy of vaccination. Herein, we discuss COVID-19 genomic vaccines, which deliver viral genetic material to host cells through diverse biotechnology platforms, including viral vector vaccines, messenger RNA nucleic acid vaccines, and DNA nucleic acid vaccines. We compare and contrast vaccine characteristics, composition, and pros and cons among different genomic vaccine platforms as well as non-genomic vaccines. This review summarizes all current knowledge about COVID-19 genomic vaccines, which could be highly valuable to researchers interested in public health and vaccine development.


Subject(s)
COVID-19 , Vaccines , Viral Vaccines , Humans , COVID-19 Vaccines , Pandemics/prevention & control , COVID-19/prevention & control , Genomics , Nucleic Acid-Based Vaccines , mRNA Vaccines
16.
Med Chem ; 19(4): 393-404, 2023.
Article in English | MEDLINE | ID: mdl-36093822

ABSTRACT

BACKGROUND: Cardiovascular disease is one of the leading causes of death. Atherosclerosis causes arterial constriction or obstruction, resulting in acute cardiovascular illness. Cholesteryl ester transfer protein (CETP) facilitates reverse cholesterol transport. It supports the transfer of cholesteryl ester from HDL to LDL and VLDL. Inhibition of CETP by drugs limits cardiovascular disease by decreasing LDL and increasing HDL. OBJECTIVES: In this study, fourteen trifluoromethyl substituted benzene sulfonamides 6a-6g and 7a-7g were prepared. METHODS: The synthesized molecules were characterized using 1H-NMR, 13C-NMR, IR and HR-MS. They were in vitro tested to estimate their CETP inhibitory activity. RESULTS: In vitro biological evaluation showed that compounds 7d-7f had the highest inhibitory activity with 100% inhibition, while the inhibition observed by compounds 6a-6g, 7a-7c and 7g ranged from 2%-72% at 10 µM concentration. It was found that the addition of a fourth aromatic ring significantly improved the activity, which may be due to the hydrophobic nature of CETP. Also, the presence of ortho-chloro, meta-chloro and para-methyl substituents results in high inhibitory activity. CONCLUSION: The induced fit docking studies revealed that hydrophobic interaction guided ligand/ CETP binding interaction in addition to H-bond formation with Q199, R201, and H232. Furthermore, pharmacophore mapping demonstrated that this series satisfies the functionalities of the current CETP inhibitors.


Subject(s)
Cardiovascular Diseases , Cholesterol Ester Transfer Proteins , Humans , Cholesterol Ester Transfer Proteins/metabolism , Sulfonamides/pharmacology , Pharmacophore
17.
Viruses ; 15(2)2023 02 19.
Article in English | MEDLINE | ID: mdl-36851782

ABSTRACT

Despite the great technological and medical advances in fighting viral diseases, new therapies for most of them are still lacking, and existing antivirals suffer from major limitations regarding drug resistance and a limited spectrum of activity. In fact, most approved antivirals are directly acting antiviral (DAA) drugs, which interfere with viral proteins and confer great selectivity towards their viral targets but suffer from resistance and limited spectrum. Nowadays, host-targeted antivirals (HTAs) are on the rise, in the drug discovery and development pipelines, in academia and in the pharmaceutical industry. These drugs target host proteins involved in the virus life cycle and are considered promising alternatives to DAAs due to their broader spectrum and lower potential for resistance. Herein, we discuss an important class of HTAs that modulate signal transduction pathways by targeting host kinases. Kinases are considered key enzymes that control virus-host interactions. We also provide a synopsis of the antiviral drug discovery and development pipeline detailing antiviral kinase targets, drug types, therapeutic classes for repurposed drugs, and top developing organizations. Furthermore, we detail the drug design and repurposing considerations, as well as the limitations and challenges, for kinase-targeted antivirals, including the choice of the binding sites, physicochemical properties, and drug combinations.


Subject(s)
Antiviral Agents , Protein Kinases , Humans , Antiviral Agents/pharmacology , Drug Repositioning , Drug Discovery , Drug Design
18.
NPJ Vaccines ; 8(1): 129, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37658087

ABSTRACT

COVID-19 vaccines have been instrumental tools in the fight against SARS-CoV-2 helping to reduce disease severity and mortality. At the same time, just like any other therapeutic, COVID-19 vaccines were associated with adverse events. Women have reported menstrual cycle irregularity after receiving COVID-19 vaccines, and this led to renewed fears concerning COVID-19 vaccines and their effects on fertility. Herein we devised an informatics workflow to explore the causal drivers of menstrual cycle irregularity in response to vaccination with mRNA COVID-19 vaccine BNT162b2. Our methods relied on gene expression analysis in response to vaccination, followed by network biology analysis to derive testable hypotheses regarding the causal links between BNT162b2 and menstrual cycle irregularity. Five high-confidence transcription factors were identified as causal drivers of BNT162b2-induced menstrual irregularity, namely: IRF1, STAT1, RelA (p65 NF-kB subunit), STAT2 and IRF3. Furthermore, some biomarkers of menstrual irregularity, including TNF, IL6R, IL6ST, LIF, BIRC3, FGF2, ARHGDIB, RPS3, RHOU, MIF, were identified as topological genes and predicted as causal drivers of menstrual irregularity. Our network-based mechanism reconstruction results indicated that BNT162b2 exerted biological effects similar to those resulting from prolactin signaling. However, these effects were short-lived and didn't raise concerns about long-term infertility issues. This approach can be applied to interrogate the functional links between drugs/vaccines and other side effects.

19.
Article in English | MEDLINE | ID: mdl-37165488

ABSTRACT

BACKGROUND: Hyperlipidemia is considered a major risk factor for the progress of atherosclerosis. OBJECTIVE: Cholesteryl ester transfer protein (CETP) facilitates the relocation of cholesterol esters from HDL to LDL. CETP inhibition produces higher HDL and lower LDL levels. METHODS: Synthesis of nine benzylamino benzamides 8a-8f and 9a-9c was performed. RESULTS: In vitro biological study displayed potential CETP inhibitory activity, where compound 9c had the best activity with an IC50 of 1.03 µM. Induced-fit docking demonstrated that 8a-8f and 9a-9c accommodated the CETP active site and hydrophobic interaction predominated ligand/ CETP complex formation. CONCLUSION: Pharmacophore mapping showed that this scaffold endorsed CETP inhibitors features and consequently elaborated the high CETP binding affinity.

20.
Front Med (Lausanne) ; 10: 1211283, 2023.
Article in English | MEDLINE | ID: mdl-37869161

ABSTRACT

Background: COVID-19 vaccines continue to save people's lives around the world; however, some vaccine adverse events have been a major concern which slowed down vaccination campaigns. Anecdotal evidence pointed to the vaccine effect on menstruation but evidence from the adverse event reporting systems and the biomedical literature was lacking. This study aimed to investigate the physiological changes in women during menstruation amid the COVID-19 vaccination. Methods: A cross-sectional online survey was distributed to COVID-19 vaccinated women from Nov 2021 to Jan 2022. The results were analyzed using the SPSS software. Results: Among the 564 vaccinated women, 52% experienced significant menstrual irregularities post-vaccination compared to before regardless of the vaccine type. The kind of menstrual irregularity varied among the vaccinated women, for example, 33% had earlier menstruation, while 35% reported delayed menstruation. About 31% experienced heavier menstruation, whereas 24% had lighter menstrual flow. About 29% had menstruation last longer, but 13% had it shorter than usual. Noteworthy, the menstrual irregularities were more frequent after the second vaccine shot, and they disappeared within 3 months on average. Interestingly, 24% of the vaccinated women reported these irregularities to their gynecologist. Conclusion: The COVID-19 vaccine may cause physiological disturbances during menstruation. Luckily, these irregularities were short-termed and should not be a reason for vaccine hesitancy in women. Further studies are encouraged to unravel the COVID-19 vaccine adverse effect on women's health.

SELECTION OF CITATIONS
SEARCH DETAIL