Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Nanoscale ; 15(7): 3120-3129, 2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36723052

ABSTRACT

Photoluminescence (PL) is one of the most exciting properties of atomically precise metal nanoclusters (NCs), making them a prime choice for various applications, from sensing to bio-imaging. While there are several advantages of metal NCs for PL-based applications, their PLQY is significantly low compared to other PL-active nanomaterials or organic dyes. It is essential to understand the PL mechanism in detail to tune the PLQY of NCs. There are numerous reports on gold NCs with a known structure where the origin of PL has been explored, and it was found that ligands play a vital role in their PL properties along with the kernel (core). Reports on understanding the ligand effects on PL properties are also evolving for the case of atomically precise silver NCs. This mini-review will summarize the ligands' role in PL of 29 atom Ag NCs, the most reported NCs with diversity in the silver family. The ligands were classified as primary and secondary, and their effects on tuning the PL properties were explained. The review will also address some of the answers to open questions for AgNCs, such as the origin of PL, dynamics, and the tunability of PLQY using ligand modifications.

2.
Commun Chem ; 6(1): 157, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37495665

ABSTRACT

Atomically precise metal nanoclusters (NCs) with molecule-like structures are emerging nanomaterials with fascinating chemical and physical properties. Photoluminescence (PL), catalysis, sensing, etc., are some of the most intriguing and promising properties of NCs, making the metal NCs potentially beneficial in different applications. However, long-term instability under ambient conditions is often considered the primary barrier to translational research in the relevant application fields. Creating nanohybrids between such atomically precise NCs and other stable nanomaterials (0, 1, 2, or 3D) can help expand their applicability. Many such recently reported nanohybrids have gained promising attention as a new class of materials in the application field, exhibiting better stability and exciting properties of interest. This perspective highlights such nanohybrids and briefly explains their exciting properties. These hybrids are categorized based on the interactions between the NCs and other materials, such as metal-ligand covalent interactions, hydrogen-bonding, host-guest, hydrophobic, and electrostatic interactions during the formation of nanohybrids. This perspective will also capture some of the new possibilities with such nanohybrids.

SELECTION OF CITATIONS
SEARCH DETAIL