Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Cell Tissue Res ; 386(2): 391-413, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34319433

ABSTRACT

All animals, other than Platyhelminthes, produce eggs containing yolk, referred to as "entolecithal" eggs. However, only Neoophora, in the phylum Platyhelminthes, produce "ectolecithal" eggs (egg capsules), in which yolk is stored in the vitelline cells surrounding oocytes. Vitelline cells are derived from vitellaria (yolk glands). Vitellaria are important reproductive organs that may be studied to elucidate unique mechanisms that have been evolutionarily conserved within Platyhelminthes. Currently, only limited molecular level information is available on vitellaria. The current study identified major vitellaria-specific proteins in a freshwater planarian, Dugesia ryukyuensis, using peptide mass fingerprinting (PMF) and expression analyses. Amino acid sequence analysis and orthology analysis via OrthoFinder ver.2.3.8 indicated that the identified major vitellaria-specific novel yolk ferritins were conserved in planarians (Tricladida). Because ferritins play an important role in Fe (iron) storage, we examined the metal elements contained in vitellaria and ectolecithal eggs, using non-heme iron histochemistry, elemental analysis based on inductively coupled plasma mass spectrometry and transmission electron microscopy- energy-dispersive X-ray spectroscopy analysis. Interestingly, vitellaria and egg capsules contained large amounts of aluminum (Al), but not Fe. The knockdown of the yolk ferritin genes caused a decrease in the volume of egg capsules, abnormality in juveniles, and increase in Al content in vitellaria. Yolk ferritins of D. ryukyuensis may regulate Al concentration in vitellaria via their pooling function of Al and protect the egg capsule production and normal embryogenesis from Al toxicity.


Subject(s)
Aluminum/metabolism , Egg Proteins/metabolism , Ferritins/metabolism , Helminth Proteins/metabolism , Iron/metabolism , Planarians/metabolism , Amino Acid Sequence , Animals , Egg Proteins/analysis , Egg Proteins/genetics , Ferritins/analysis , Ferritins/genetics , Helminth Proteins/analysis , Helminth Proteins/genetics , Ovum/growth & development , Ovum/metabolism , Planarians/genetics , Planarians/growth & development
2.
Biochem Biophys Res Commun ; 524(3): 542-548, 2020 04 09.
Article in English | MEDLINE | ID: mdl-32014251

ABSTRACT

ES1 homologs are conserved among prokaryotes and eukaryotes, and the gene expression of ES1 homologs has been confirmed in diverse mammalian tissues. However, the localization and function of mammalian ES1 proteins remain poorly understood. ES1 protein was found specifically expressed in the cone cells of zebrafish and was proposed to contribute to the formation of mega mitochondria. We also observed mega mitochondria in the cone cells of porcine retinas, which raised the question regarding the localization of the porcine ES1. Therefore, in the present study, we aimed to determine the localization of ES1 in porcine retinas. We prepared a rabbit polyclonal antibody against the ES1 C-terminal and performed western blotting analysis and immunoelectron microscopy. The ES1 was found to be localized mainly in the mitochondrial intermembrane space of the porcine retinal cells. Immunopositive signals for ES1 were observed in the mitochondria of almost all retinal cells, and not specifically in cone cells. Our results and the ES1 sequences indicated that the glyoxalase III activity of ES1 might contribute to the stable functionality of the active mitochondria in a protective manner.


Subject(s)
Eye Proteins/metabolism , Mitochondrial Membranes/metabolism , Retina/cytology , Sequence Homology, Amino Acid , Swine/metabolism , Amino Acid Sequence , Animals , Eye Proteins/chemistry , Mitochondrial Proteins/chemistry , Mitochondrial Proteins/metabolism , Photoreceptor Cells, Vertebrate/cytology , Photoreceptor Cells, Vertebrate/metabolism , Photoreceptor Cells, Vertebrate/ultrastructure , Retina/ultrastructure , Solubility
3.
Biochim Biophys Acta Gen Subj ; 1861(11 Pt A): 2830-2842, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28778484

ABSTRACT

BACKGROUND: In general, glycerol kinases (GKs) are transferases that catalyze phospho group transfer from ATP to glycerol, and the mechanism was suggested to be random bi-bi. The reverse reaction i.e. phospho transfer from glycerol 3-phosphate (G3P) to ADP is only physiologically feasible by the African trypanosome GK. In contrast to other GKs the mechanism of Trypanosoma brucei gambiense glycerol kinase (TbgGK) was shown to be in an ordered fashion, and proceeding via autophosphorylation. From the unique reaction mechanism of TbgGK, we envisaged its potential to possess phosphatase activity in addition to being a kinase. METHODS: Our hypothesis was tested by spectrophotometric and LC-MS/MS analyses using paranitrophenyl phosphate (pNPP) and TbgGK's natural substrate, G3P respectively. Furthermore, protein X-ray crystallography and site-directed mutagenesis were performed to examine pNPP binding, catalytic residues, and the possible reaction mechanism. RESULTS: In addition to its widely known and expected phosphotransferase (class II) activity, TbgGK can efficiently facilitate the hydrolytic cleavage of phosphoric anhydride bonds (a class III property). This phosphatase activity followed the classical Michaelis-Menten pattern and was competitively inhibited by ADP and G3P, suggesting a common catalytic site for both activities (phosphatase and kinase). The structure of the TGK-pNPP complex, and structure-guided mutagenesis implicated T276 to be important for the catalysis. Remarkably, we captured a crystallographic molecular snapshot of the phosphorylated T276 reaction intermediate. CONCLUSION: We conclude that TbgGK has both kinase and phosphatase activities. GENERAL SIGNIFICANCE: This is the first report on a bifunctional kinase/phosphatase enzyme among members of the sugar kinase family.


Subject(s)
Glycerol Kinase/chemistry , Phosphoric Monoester Hydrolases/chemistry , Protein Conformation , Trypanosoma brucei gambiense/enzymology , Adenosine Diphosphate/metabolism , Adenosine Triphosphate/metabolism , Animals , Crystallography, X-Ray , Glycerol/metabolism , Glycerol Kinase/genetics , Glycerol Kinase/metabolism , Glycerophosphates/metabolism , Humans , Nitrobenzenes/chemistry , Phosphoric Monoester Hydrolases/metabolism , Substrate Specificity , Trypanosoma brucei gambiense/pathogenicity
4.
Proc Natl Acad Sci U S A ; 110(12): 4580-5, 2013 Mar 19.
Article in English | MEDLINE | ID: mdl-23487766

ABSTRACT

In addition to haem copper oxidases, all higher plants, some algae, yeasts, molds, metazoans, and pathogenic microorganisms such as Trypanosoma brucei contain an additional terminal oxidase, the cyanide-insensitive alternative oxidase (AOX). AOX is a diiron carboxylate protein that catalyzes the four-electron reduction of dioxygen to water by ubiquinol. In T. brucei, a parasite that causes human African sleeping sickness, AOX plays a critical role in the survival of the parasite in its bloodstream form. Because AOX is absent from mammals, this protein represents a unique and promising therapeutic target. Despite its bioenergetic and medical importance, however, structural features of any AOX are yet to be elucidated. Here we report crystal structures of the trypanosomal alternative oxidase in the absence and presence of ascofuranone derivatives. All structures reveal that the oxidase is a homodimer with the nonhaem diiron carboxylate active site buried within a four-helix bundle. Unusually, the active site is ligated solely by four glutamate residues in its oxidized inhibitor-free state; however, inhibitor binding induces the ligation of a histidine residue. A highly conserved Tyr220 is within 4 Å of the active site and is critical for catalytic activity. All structures also reveal that there are two hydrophobic cavities per monomer. Both inhibitors bind to one cavity within 4 Å and 5 Å of the active site and Tyr220, respectively. A second cavity interacts with the inhibitor-binding cavity at the diiron center. We suggest that both cavities bind ubiquinol and along with Tyr220 are required for the catalytic cycle for O2 reduction.


Subject(s)
Cyanides/chemistry , Drug Resistance , Mitochondrial Proteins/chemistry , Oxidoreductases/chemistry , Plant Proteins/chemistry , Protozoan Proteins/chemistry , Trypanosoma brucei brucei/enzymology , Catalytic Domain , Crystallography, X-Ray , Humans , Oxidation-Reduction , Oxygen/chemistry , Protein Structure, Secondary
5.
J Biotechnol ; 385: 42-48, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38479472

ABSTRACT

Oryzamutaic acids, possessing a nitrogen-containing heterocyclic skeleton, have been isolated and identified from a rice mutant. Although oryzamutaic acids are expected to be functional ingredients, their functionality is difficult to evaluate, because of their wide variety and presence in trace amounts. Furthermore, how oryzamutaic acid is synthesized in vivo is unclear. Therefore, we developed a simple enzymatic synthesis method for these compounds in vitro. We focused on L-lysine ε-dehydrogenase (LysDH) from Agrobacterium tumefaciens, which synthesizes α-aminoadipate-δ-semialdehyde-a precursor of oryzamutaic acids. LysDH was cloned and expressed in Escherichia coli. Analysis of activity revealed that LysDH catalyzed the synthesis of oryzamutaic acid H at neutral pH in vitro. We synthesized 1.6 mg oryzamutaic acid H from 100 mg L-lysine. The synthesized oryzamutaic acid H exhibited UVA absorption, stability of temperature, and stability at a wide pH range. To our knowledge, this study is the first to report the enzymatic synthesis of oryzamutaic acid H in vitro and provides a basis for understanding the mechanisms of oryzamutaic acid synthesis in vivo.


Subject(s)
Agrobacterium tumefaciens , Amino Acid Oxidoreductases , Agrobacterium tumefaciens/genetics , Lysine , Acids
6.
Am J Physiol Endocrinol Metab ; 305(2): E213-29, 2013 Jul 15.
Article in English | MEDLINE | ID: mdl-23695215

ABSTRACT

LKB1 phosphorylates members of the AMP-activated protein kinase (AMPK) family. LKB1 and AMPK in the skeletal muscle are believed to regulate not only fuel oxidation during exercise but also exercise capacity. LKB1 was also required to prevent diaphragm fatigue, which was shown to affect exercise performance. Using mice expressing dominant negative (DN) mutants of LKB1 and AMPK, specifically in the skeletal muscle but not in the heart, we investigated the roles of LKB1 and AMPK activity in exercise performance and the effects of these kinases on the characteristics of respiratory and locomotive muscles. In the diaphragm and gastrocnemius, both AMPK-DN and LKB1-DN mice showed complete loss of AMPKα2 activity, and LKB1-DN mice showed a reduction in LKB1 activity. Exercise capacity was significantly reduced in LKB1-DN mice, with a marked reduction in oxygen consumption and carbon dioxide production during exercise. The diaphragm from LKB1-DN mice showed an increase in myosin heavy chain IIB and glycolytic enzyme expression. Normal respiratory chain function and CPT I activity were shown in the isolated mitochondria from LKB1-DN locomotive muscle, and the expression of genes related to fiber type, mitochondria function, glucose and lipid metabolism, and capillarization in locomotive muscle was not different between LKB1-DN and AMPK-DN mice. We concluded that LKB1 in the skeletal muscle contributes significantly to exercise capacity and oxygen uptake during exercise. LKB1 mediated the change of fiber-type distribution in the diaphragm independently of AMPK and might be responsible for the phenotypes we observed.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Energy Metabolism/physiology , Muscle, Skeletal/metabolism , Oxygen Consumption/physiology , Physical Endurance/physiology , Protein Serine-Threonine Kinases/metabolism , Adenine Nucleotides/metabolism , Animals , Blotting, Western , Body Weight/physiology , Carbon Dioxide/metabolism , DNA Primers , Diaphragm/anatomy & histology , Diaphragm/metabolism , Locomotion/physiology , Malonyl Coenzyme A/metabolism , Mice , Mice, Knockout , Mice, Transgenic , Microtubules/metabolism , Mitogen-Activated Protein Kinases/metabolism , Muscle, Skeletal/anatomy & histology , Organ Size/physiology , Phenotype , Protein Serine-Threonine Kinases/genetics , Real-Time Polymerase Chain Reaction
7.
FEBS Open Bio ; 13(11): 2081-2093, 2023 11.
Article in English | MEDLINE | ID: mdl-37716914

ABSTRACT

Ubiquinone (UQ) is a lipophilic electron carrier that functions in the respiratory and photosynthetic electron transfer chains of proteobacteria and eukaryotes. Bacterial UQ biosynthesis is well studied in the gammaproteobacterium Escherichia coli, in which most bacterial UQ-biosynthetic enzymes have been identified. However, these enzymes are not always conserved among UQ-containing bacteria. In particular, the alphaproteobacterial UQ biosynthesis pathways contain many uncharacterized steps with unknown features. In this work, we identified in the alphaproteobacterium Rhodobacter capsulatus a new decarboxylative hydroxylase and named it UbiN. Remarkably, the UbiN sequence is more similar to a salicylate hydroxylase than the conventional flavin-containing UQ-biosynthetic monooxygenases. Under aerobic conditions, R. capsulatus ΔubiN mutant cells accumulate 3-decaprenylphenol, which is a UQ-biosynthetic intermediate. In addition, 3-decaprenyl-4-hydroxybenzoic acid, which is the substrate of UQ-biosynthetic decarboxylase UbiD, also accumulates in ΔubiN cells under aerobic conditions. Considering that the R. capsulatus ΔubiD-X double mutant strain (UbiX produces a prenylated FMN required for UbiD) grows as a wild-type strain under aerobic conditions, these results indicate that UbiN catalyzes the aerobic decarboxylative hydroxylation of 3-decaprenyl-4-hydroxybenzoic acid. This is the first example of the involvement of decarboxylative hydroxylation in ubiquinone biosynthesis. This finding suggests that the C1 hydroxylation reaction is, at least in R. capsulatus, the first step among the three hydroxylation steps involved in UQ biosynthesis. Although the C5 hydroxylation reaction is often considered to be the first hydroxylation step in bacterial UQ biosynthesis, it appears that the R. capsulatus pathway is more similar to that found in mammalians.


Subject(s)
Rhodobacter capsulatus , Animals , Rhodobacter capsulatus/genetics , Ubiquinone , Mixed Function Oxygenases/genetics , Escherichia coli/genetics , Mammals
8.
Front Cell Infect Microbiol ; 13: 1302114, 2023.
Article in English | MEDLINE | ID: mdl-38332950

ABSTRACT

Fascioliasis is a neglected tropical zoonotic disease caused by liver flukes belonging to the genus Fasciola. The emergence of resistance to triclabendazole, the only World Health Organization-recommended drug for this disease, highlights the need for the development of new drugs. Helminths possess an anaerobic mitochondrial respiratory chain (fumarate respiration) which is considered a potential drug target. This study aimed to evaluate the occurrence of fumarate respiration in Fasciola flukes. We analyzed the properties of the respiratory chain of Fasciola flukes in both adults and newly excysted juveniles (NEJs). Fasciola flukes travel and mature through the stomach, bowel, and abdominal cavity to the liver, where oxygen levels gradually decline. High fumarate reductase activity was observed in the mitochondrial fraction of adult Fasciola flukes. Furthermore, rhodoquinone-10 (RQ10 Em'= -63 mV), a low-potential electron mediator used in fumarate respiration was found to be predominant in adults. In contrast, the activity of oxygen respiration was low in adults. Rotenone, atpenin A5, and ascochlorin, typical inhibitors of mitochondrial enzymes in complexes I, II, and III, respectively, inhibit the activity of each enzyme in the adult mitochondrial fraction. These inhibitors were then used for in vitro viability tests of NEJs. Under aerobic conditions, NEJs were killed by rotenone or ascochlorin, which inhibit aerobic respiration (complex I-III), whereas atpenin A5, which inhibits complex II involved in fumarate respiration, did not affect NEJs. Moreover, ubiquinone-10 (UQ10 Em'= +110 mV), which is used in oxidative respiration, was detected in NEJs, in addition to RQ10. In contrast, under anaerobic conditions, rotenone and atpenin A5, which inhibit fumarate respiration (complex I-II), were crucial for NEJs. These findings demonstrate that NEJs have active hybrid respiration, in which they can properly use both oxygen and fumarate respiration, depending on oxygen availability. Thus, fumarate respiration is a promising drug target for Fasciola flukes, because it plays an essential role in both adults and NEJs.


Subject(s)
Alkenes , Fasciola , Fascioliasis , Phenols , Animals , Rotenone , Fascioliasis/drug therapy , Respiration , Oxygen
9.
BBA Adv ; 3: 100092, 2023.
Article in English | MEDLINE | ID: mdl-37250100

ABSTRACT

Glycation, caused by reactive dicarbonyls, plays a role in various diseases by forming advanced glycation end products. In live cells, reactive dicarbonyls such as glyoxal (GO) and methylglyoxal (MGO) are produced during cell metabolism, and these should be removed consistently. However, the dicarbonyl metabolic system in the mitochondria remains unclear. It has been speculated that the mammalian mitochondrial protein ES1 is a homolog of bacterial elbB possessing glyoxalase III (GLO3) activity. Therefore, in this study, to investigate ES1 functions and GLO3 activity, we generated ES1-knockout (KO) mice and recombinant mouse ES1 protein and investigated the biochemical and histological analyses. In the mitochondrial fraction obtained from ES1-KO mouse brains, the GO metabolism and cytochrome c oxidase activity were significantly lower than those in the mitochondrial fraction obtained from wildtype (WT) mouse brains. However, the morphological features of the mitochondria did not change noticeably in the ES1-KO mouse brains compared with those in the WT mouse brains. The mitochondrial proteome analysis showed that the MGO degradation III pathway and oxidative phosphorylation-related proteins were increased. These should be the response to the reduced GO metabolism caused by ES1 deletion to compensate for the dicarbonyl metabolism and damaged cytochrome c oxidase by elevated GO. Recombinant mouse ES1 protein exhibited catalytic activity of converting GO to glycolic acid. These results indicate that ES1 possesses GLO3 activity and modulates the metabolism of GO in the mitochondria. To our knowledge, this is the first study to show a novel metabolic pathway for reactive dicarbonyls in mitochondria.

10.
iScience ; 26(1): 105776, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36594009

ABSTRACT

Various parasitic flatworms infect vertebrates for sexual reproduction, often causing devastating diseases in their hosts. Consequently, flatworms are of great socioeconomic and biomedical importance. Although the cessation of parasitic flatworm sexual reproduction is a major target of anti-parasitic drug design, little is known regarding bioactive compounds controlling flatworm sexual maturation. Using the planarian Dugesia ryukyuensis, we observed that sex-inducing substances found in planarians are also widespread in parasitic flatworms, such as monogeneans and flukes (but not in tapeworms). Reverse-phase HPLC analysis revealed the sex-inducing substance(s) eluting around the tryptophan retention time in the fluke Calicophoron calicophorum, consistent with previous studies on the planarian Bipalium nobile, suggesting that the substance(s) is likely conserved among flatworms. Moreover, six of the 18 ovary-inducing substances identified via transcriptome and metabolome analyses are involved in purine metabolism. Our findings provide a basis for understanding and modifying the life cycles of various parasitic flatworms.

11.
Bioresour Technol ; 359: 127479, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35714780

ABSTRACT

cis,cis-Muconate (ccMA) is a promising platform for use in synthesizing various polymers. A glucose-free ccMA production using Pseudomonas sp. NGC7 from hardwood lignin-derived aromatic compounds was previously reported. In that system, syringyl nucleus compounds were essential for growth. Here, it is shown that NGC7 is available for glucose-free ccMA production even from a mixture of lignin-derived aromatics that does not contain syringyl nucleus compounds. By introducing a gene set for the protocatechuate (PCA)-shunt consisting of PCA 3,4-dioxygenase and PCA decarboxylase into an NGC7-derived strain deficient in PCA 3,4-dioxygenase and ccMA cycloisomerase, it was succeeded in constructing a ccMA-producing strain that grows on a lignin-derived aromatics mixture containing no syringyl nucleus compounds. Finally, it is demonstrated that the engineered strain produced ccMA from sugar cane bagasse alkaline extract in 18.7 mol%. NGC7 is thus shown to be a promising microbial chassis for biochemicals production from lignin-derived aromatics.


Subject(s)
Dioxygenases , Pseudomonas , Saccharum , Bacterial Proteins , Cellulose , Glucose , Lignin/chemistry , Metabolic Engineering/methods , Pseudomonas/genetics , Saccharum/chemistry , Sorbic Acid/analogs & derivatives , Sorbic Acid/metabolism
12.
Biochim Biophys Acta ; 1797(4): 443-50, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20056101

ABSTRACT

The trypanosome alternative oxidase (TAO) functions in the African trypanosomes as a cytochrome-independent terminal oxidase, which is essential for their survival in the mammalian host and as it does not exist in the mammalian host is considered to be a promising drug target for the treatment of trypanosomiasis. In the present study, recombinant TAO (rTAO) overexpressed in a haem-deficient Escherichia coli strain has been solubilized from E. coli membranes and purified to homogeneity in a stable and highly active form. Analysis of bound iron detected by inductively coupled plasma-mass spectrometer (ICP-MS) reveals a stoichiometry of two bound iron atoms per monomer of rTAO. Confirmation that the rTAO was indeed a diiron protein was obtained by EPR analysis which revealed a signal, in the reduced forms of rTAO, with a g-value of 15. The kinetics of ubiquiol-1 oxidation by purified rTAO showed typical Michaelis-Menten kinetics (K(m) of 338microM and V(max) of 601micromol/min/mg), whereas ubiquinol-2 oxidation showed unusual substrate inhibition. The specific inhibitor, ascofuranone, inhibited the enzyme in a mixed-type inhibition manner with respect to ubiquinol-1.


Subject(s)
Oxidoreductases/metabolism , Protozoan Proteins/metabolism , Recombinant Proteins/metabolism , Trypanosoma brucei brucei/enzymology , Catalysis/drug effects , Electron Spin Resonance Spectroscopy , Electrophoresis, Polyacrylamide Gel , Enzyme Inhibitors/pharmacology , Escherichia coli/genetics , Kinetics , Mass Spectrometry , Mitochondrial Proteins , Oxidation-Reduction , Oxidoreductases/genetics , Plant Proteins , Protozoan Proteins/genetics , Recombinant Proteins/isolation & purification , Sesquiterpenes/pharmacology , Substrate Specificity , Trypanosoma brucei brucei/genetics , Ubiquinone/analogs & derivatives , Ubiquinone/metabolism
13.
J Vet Med Sci ; 73(5): 615-21, 2011 May.
Article in English | MEDLINE | ID: mdl-21187682

ABSTRACT

African trypanosome species are causative agents for sleeping sickness in humans and nagana disease in cattle. Trypanosoma brucei can generate ATP via a reverse reaction with glycerol kinase (GK) when alternative oxidase (AOX) is inhibited; thus, GK is considered to be a crucial target for chemotherapy combined with AOX. However, the energy metabolism systems of African trypanosome species other than T. brucei are poorly understood. Thus, GK genes were surveyed from genome databases and cloned by PCR from T. vivax and T. congolense. Then, recombinant GK proteins (rGK) of T. vivax, T. congolense and T. brucei were expressed and purified. Kinetic analysis of these rGK proteins revealed that the K(m) values of T. congolense rGK for ADP and G-3-P substrates were lower than those of T. vivax and T. brucei. The expression level of GK molecules was highest in T. congolense cells and lowest in T. vivax cells. Based on these results, effective combination dosages of ascofuranone, a specific inhibitor of AOX, and glycerol, an inhibitor of the GK reverse reaction, were determined by using in vitro-cultured trypanosome cells.


Subject(s)
Glycerol Kinase/metabolism , Phylogeny , Trypanosoma/enzymology , Trypanosoma/genetics , Amino Acid Sequence , Animals , Cloning, Molecular , DNA, Complementary/genetics , Energy Metabolism , Gene Expression Regulation, Enzymologic , Glycerol Kinase/genetics , Kinetics , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Species Specificity
14.
Article in English | MEDLINE | ID: mdl-20208159

ABSTRACT

Cyanide-insensitive alternative oxidase (AOX) is a mitochondrial membrane protein and a non-proton-pumping ubiquinol oxidase that catalyzes the four-electron reduction of dioxygen to water. In the African trypanosomes, trypanosome alternative oxidase (TAO) functions as a cytochrome-independent terminal oxidase that is essential for survival in the mammalian host; hence, the enzyme is considered to be a promising drug target for the treatment of trypanosomiasis. In the present study, recombinant TAO (rTAO) overexpressed in haem-deficient Escherichia coli was purified and crystallized at 293 K by the hanging-drop vapour-diffusion method using polyethylene glycol 400 as a precipitant. X-ray diffraction data were collected at 100 K and were processed to 2.9 A resolution with 93.1% completeness and an overall R(merge) of 9.5%. The TAO crystals belonged to the orthorhombic space group I222 or I2(1)2(1)2(1), with unit-cell parameters a = 63.11, b = 136.44, c = 223.06 A. Assuming the presence of two rTAO molecules in the asymmetric unit (2 x 38 kDa), the calculated Matthews coefficient (V(M)) was 3.2 A(3) Da(-1), which corresponds to a solvent content of 61.0%. This is the first report of a crystal of the membrane-bound diiron proteins, which include AOXs.


Subject(s)
Oxidoreductases/chemistry , Trypanosoma brucei brucei/enzymology , Crystallization , Crystallography, X-Ray , Oxidoreductases/isolation & purification
15.
Article in English | MEDLINE | ID: mdl-19724139

ABSTRACT

In adult Ascaris suum (roundworm) mitochondrial membrane-bound complex II acts as a rhodoquinol-fumarate reductase, which is the reverse reaction to that of mammalian complex II (succinate-ubiquinone reductase). The adult A. suum rhodoquinol-fumarate reductase was crystallized in the presence of octaethyleneglycol monododecyl ether and n-dodecyl-beta-D-maltopyranoside in a 3:2 weight ratio. The crystals belonged to the orthorhombic space group P2(1)2(1)2(1), with unit-cell parameters a = 123.75, b = 129.08, c = 221.12 A, and diffracted to 2.8 A resolution using synchrotron radiation. The presence of two molecules in the asymmetric unit (120 kDa x 2) gives a crystal volume per protein mass (V(M)) of 3.6 A(3) Da(-1).


Subject(s)
Anilides/pharmacology , Ascaris suum/enzymology , Enzyme Inhibitors/pharmacology , Mitochondria/enzymology , Succinate Dehydrogenase/antagonists & inhibitors , Succinate Dehydrogenase/chemistry , Ubiquinone/metabolism , Animals , Crystallization , Crystallography, X-Ray , Mitochondria/drug effects , Parasites/enzymology , Substrate Specificity/drug effects , Succinate Dehydrogenase/isolation & purification
16.
Genes (Basel) ; 10(1)2019 01 08.
Article in English | MEDLINE | ID: mdl-30626105

ABSTRACT

Eimeria tenella is an intracellular apicomplexan parasite, which infects cecal epithelial cells from chickens and causes hemorrhagic diarrhea and eventual death. We have previously reported the comparative RNA sequence analysis of the E. tenella sporozoite stage between virulent and precocious strains and showed that the expression of several genes involved in mitochondrial electron transport chain (ETC), such as type II NADH dehydrogenase (NDH-2), complex II (succinate:quinone oxidoreductase), malate:quinone oxidoreductase (MQO), and glycerol-3-phosphate dehydrogenase (G3PDH), were upregulated in virulent strain. To study E. tenella mitochondrial ETC in detail, we developed a reproducible method for preparation of mitochondria-rich fraction from sporozoites, which maintained high specific activities of dehydrogenases, such as NDH-2 followed by G3PDH, MQO, complex II, and dihydroorotate dehydrogenase (DHODH). Of particular importance, we showed that E. tenella sporozoite mitochondria possess an intrinsic ability to perform fumarate respiration (via complex II) in addition to the classical oxygen respiration (via complexes III and IV). Further analysis by high-resolution clear native electrophoresis, activity staining, and nano-liquid chromatography tandem-mass spectrometry (nano-LC-MS/MS) provided evidence of a mitochondrial complex II-III-IV supercomplex. Our analysis suggests that complex II from E. tenella has biochemical features distinct to known orthologues and is a potential target for the development of new anticoccidian drugs.


Subject(s)
Eimeria tenella/enzymology , Electron Transport Chain Complex Proteins/chemistry , Protozoan Proteins/chemistry , Electron Transport Chain Complex Proteins/metabolism , Fumarates/metabolism , Mitochondria/enzymology , Mitochondria/metabolism , Mitochondria/ultrastructure , Oxygen/metabolism , Protozoan Proteins/metabolism
17.
Biochemistry ; 47(41): 10881-91, 2008 Oct 14.
Article in English | MEDLINE | ID: mdl-18808149

ABSTRACT

Dihydroorotate dehydrogenase (DHOD) from Trypanosoma cruzi (TcDHOD) is a member of family 1A DHOD that catalyzes the oxidation of dihydroorotate to orotate (first half-reaction) and then the reduction of fumarate to succinate (second half-reaction) in the de novo pyrimidine biosynthesis pathway. The oxidation of dihydroorotate is coupled with the reduction of FMN, and the reduced FMN converts fumarate to succinate in the second half-reaction. TcDHOD are known to be essential for survival and growth of T. cruzi and a validated drug target. The first-half reaction mechanism of the family 1A DHOD from Lactococcus lactis has been extensively investigated on the basis of kinetic isotope effects, mutagenesis and X-ray structures determined for ligand-free form and in complex with orotate, the product of the first half-reaction. In this report, we present crystal structures of TcDHOD in the ligand-free form and in complexes with an inhibitor, physiological substrates and products of the first and second half-reactions. These ligands bind to the same active site of TcDHOD, which is consistent with the one-site ping-pong Bi-Bi mechanism demonstrated by kinetic studies for family 1A DHODs. The binding of ligands to TcDHOD does not cause any significant structural changes to TcDHOD, and both reduced and oxidized FMN cofactors are in planar conformation, which indicates that the reduction of the FMN cofactor with dihydroorotate produces anionic reduced FMN. Therefore, they should be good models for the enzymatic reaction pathway of TcDHOD, although orotate and fumarate bind to TcDHOD with the oxidized FMN and dihydroorotate with the reduced FMN in the structures determined here. Cys130, which was identified as the active site base for family 1A DHOD (Fagan, R. L., Jensen, K. F., Bjornberg, O., and Palfey, B. A. (2007) Biochemistry 46, 4028-4036.), is well located for abstracting a proton from dihydroorotate C5 and transferring it to outside water molecules. The bound fumarate is in a twisted conformation, which induces partial charge separation represented as C 2 (delta-) and C 3 (delta+). Because of this partial charge separation, the thermodynamically favorable reduction of fumarate with reduced FMN seems to proceed in the way that C 2 (delta-) accepts a proton from Cys130 and C 3 (delta+) a hydride (or a hydride equivalent) from reduced FMN N 5 in TcDHOD.


Subject(s)
Fumarates/metabolism , Orotic Acid/analogs & derivatives , Oxidoreductases Acting on CH-CH Group Donors/chemistry , Trypanosoma cruzi/enzymology , Amino Acid Sequence , Animals , Cloning, Molecular , Crystallography, X-Ray , Dihydroorotate Dehydrogenase , Models, Molecular , Molecular Sequence Data , Orotic Acid/metabolism , Oxidation-Reduction , Oxidoreductases Acting on CH-CH Group Donors/genetics , Oxidoreductases Acting on CH-CH Group Donors/metabolism , Protein Conformation , Sequence Homology, Amino Acid , Substrate Specificity
18.
Parasitol Int ; 57(1): 54-61, 2008 Mar.
Article in English | MEDLINE | ID: mdl-17933581

ABSTRACT

The mitochondrial metabolic pathway of the parasitic nematode Ascaris suum changes dramatically during its life cycle, to adapt to changes in the environmental oxygen concentration. We previously showed that A. suum mitochondria express stage-specific isoforms of complex II (succinate-ubiquinone reductase: SQR/quinol-fumarate reductase: QFR). The flavoprotein (Fp) and small subunit of cytochrome b (CybS) in adult complex II differ from those of infective third stage larval (L3) complex II. However, there is no difference in the iron-sulfur cluster (Ip) or the large subunit of cytochrome b (CybL) between adult and L3 isoforms of complex II. In the present study, to clarify the changes that occur in the respiratory chain of A. suum larvae during their migration in the host, we examined enzymatic activity, quinone content and complex II subunit composition in mitochondria of lung stage L3 (LL3) A. suum larvae. LL3 mitochondria showed higher QFR activity ( approximately 160 nmol/min/mg) than mitochondria of A. suum at other stages (L3: approximately 80 nmol/min/mg; adult: approximately 70 nmol/min/mg). Ubiquinone content in LL3 mitochondria was more abundant than rhodoquinone ( approximately 1.8 nmol/mg versus approximately 0.9 nmol/mg). Interestingly, the results of two-dimensional bule-native/sodium dodecyl sulfate polyacrylamide gel electrophoresis analyses showed that LL3 mitochondria contained larval Fp (Fp(L)) and adult Fp (Fp(A)) at a ratio of 1:0.56, and that most LL3 CybS subunits were of the adult form (CybS(A)). This clearly indicates that the rearrangement of complex II begins with a change in the isoform of the anchor CybS subunit, followed by a similar change in the Fp subunit.


Subject(s)
Ascariasis/parasitology , Ascaris suum/enzymology , Electron Transport Complex II/metabolism , Mitochondria, Muscle/enzymology , Animal Migration/physiology , Animals , Antibodies, Helminth/analysis , Antibodies, Helminth/metabolism , Ascariasis/enzymology , Ascaris suum/growth & development , Ascaris suum/physiology , Blotting, Western , Electron Transport Complex II/analysis , Electron Transport Complex II/chemistry , Electrophoresis, Polyacrylamide Gel , Larva/enzymology , Larva/physiology , Oxidoreductases/analysis , Oxidoreductases/metabolism , Protein Subunits/analysis , Protein Subunits/metabolism , Quinones/analysis , Rabbits
19.
Biosci Biotechnol Biochem ; 72(10): 2723-31, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18838797

ABSTRACT

Quinoprotein alcohol dehydrogenase (ADH) of acetic acid bacteria is a membrane-bound enzyme that functions as the primary dehydrogenase in the ethanol oxidase respiratory chain. It consists of three subunits and has a pyrroloquinoline quinone (PQQ) in the active site and four heme c moieties as electron transfer mediators. Of these, three heme c sites and a further site have been found to be involved in ubiquinone (Q) reduction and ubiquinol (QH2) oxidation respectively (Matsushita et al., Biochim. Biophys. Acta, 1409, 154-164 (1999)). In this study, it was found that ADH solubilized and purified with dodecyl maltoside, but not with Triton X-100, had a tightly bound Q, and thus two different ADHs, one having the tightly bound Q (Q-bound ADH) and Q-free ADH, could be obtained. The Q-binding sites of both the ADHs were characterized using specific inhibitors, a substituted phenol PC16 (a Q analog inhibitor) and antimycin A. Based on the inhibition kinetics of Q2 reductase and ubiquinol-2 (Q2H2) oxidase activities, it was suggested that there are one and two PC16-binding sites in Q-bound ADH and Q-free ADH respectively. On the other hand, with antimycin A, only one binding site was found for Q2 reductase and Q2H2 oxidase activities, irrespective of the presence of bound Q. These results suggest that ADH has a high-affinity Q binding site (QH) besides low-affinity Q reduction and QH2 oxidation sites, and that the bound Q in the QH site is involved in the electron transfer between heme c moieties and bulk Q or QH2 in the low-affinity sites.


Subject(s)
Acetic Acid/metabolism , Alcohol Oxidoreductases/metabolism , Gluconobacter/enzymology , Ubiquinone/metabolism , Alcohol Oxidoreductases/isolation & purification , Binding Sites , Chromatography, High Pressure Liquid , Kinetics , Oxidation-Reduction
20.
FEBS Lett ; 592(24): 4020-4027, 2018 12.
Article in English | MEDLINE | ID: mdl-30328102

ABSTRACT

In Euglena gracilis, wax ester fermentation produces ATP during anaerobiosis. Here, we report that anaerobic wax ester production is suppressed when the mitochondrial electron transport chain complex I is inhibited by rotenone, whereas it is increased by the uncoupler carbonyl cyanide m-chlorophenylhydrazone (CCCP). The ADP/ATP ratio in anaerobic cells is elevated by treatment with either rotenone or CCCP. Gene silencing experiments indicate that acyl-CoA dehydrogenase, electron transfer flavoprotein (ETF), and rhodoquinone (RQ) participate in wax ester production. These results suggest that fatty acids are synthesized in mitochondria by the reversal of ß-oxidation, where trans-2-enoyl-CoA is reduced mainly by acyl-CoA dehydrogenase using the electrons provided by NADH via the electron transport chain complex I, RQ, and ETF, and that ATP production is highly supported by anaerobic respiration utilizing trans-2-enoyl-CoA as a terminal electron acceptor.


Subject(s)
Cell Respiration , Esters/metabolism , Euglena gracilis/metabolism , Fatty Acids/biosynthesis , Fermentation , Mitochondria/metabolism , Acyl-CoA Dehydrogenase/genetics , Acyl-CoA Dehydrogenase/metabolism , Adenosine Diphosphate/biosynthesis , Adenosine Triphosphate/biosynthesis , Anaerobiosis , Esters/chemistry , Euglena gracilis/cytology , Euglena gracilis/genetics , Mitochondria/drug effects , RNA Interference , Rotenone/pharmacology , Uncoupling Agents/pharmacology , Waxes/chemistry , Waxes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL