Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Development ; 144(24): 4616-4624, 2017 12 15.
Article in English | MEDLINE | ID: mdl-29061637

ABSTRACT

During mammalian embryogenesis, cardiac progenitor cells constituting the second heart field (SHF) give rise to the right ventricle and primitive outflow tract (OFT). In zebrafish, previous lineage-tracing and mutant analyses suggested that SHF ventricular and OFT progenitors co-migrate to the arterial pole of the zebrafish heart tube soon after their specification in the nkx2.5+ field of anterior lateral plate mesoderm (ALPM). Using additional prospective lineage tracing, we demonstrate that while SHF ventricular progenitors migrate directly to the arterial pole, OFT progenitors become temporarily sequestered in the mesodermal cores of pharyngeal arch 2 (PA2), where they downregulate nkx2.5 expression. While there, they intermingle with precursors for PA2-derived head muscles (HMs) and hypobranchial artery endothelium, which we demonstrate are co-specified with SHF progenitors in the nkx2.5+ ALPM. Soon after their sequestration in PA2, OFT progenitors migrate to the arterial pole of the heart and differentiate into OFT lineages. Lastly, we demonstrate that SHF ventricular and OFT progenitors exhibit unique sensitivities to a mutation in fgf8a Our data highlight novel aspects of SHF, OFT and HM development in zebrafish that will inform mechanistic interpretations of cardiopharyngeal phenotypes in zebrafish models of human congenital disorders.


Subject(s)
Heart Defects, Congenital/embryology , Heart Ventricles/embryology , Stem Cells/cytology , Zebrafish/embryology , Animals , Branchial Region/metabolism , Cell Lineage , Cell Movement/physiology , Fibroblast Growth Factors/genetics , Gene Expression Regulation, Developmental , Heart Ventricles/metabolism , Homeobox Protein Nkx-2.5/biosynthesis , Mesoderm/metabolism , Myocardium/cytology , Myocardium/metabolism , Signal Transduction/genetics , Zebrafish/genetics , Zebrafish Proteins/biosynthesis , Zebrafish Proteins/genetics
2.
Ann Hum Genet ; 78(3): 155-64, 2014 May.
Article in English | MEDLINE | ID: mdl-24575791

ABSTRACT

Alkaptonuria (AKU) is an autosomal recessive disorder; caused by the mutations in the homogentisate 1, 2-dioxygenase (HGD) gene located on Chromosome 3q13.33. AKU is a rare disorder with an incidence of 1: 250,000 to 1: 1,000,000, but Slovakia and the Dominican Republic have a relatively higher incidence of 1: 19,000. Our study focused on studying the frequency of AKU and identification of HGD gene mutations in nomads. HGD gene sequencing was used to identify the mutations in alkaptonurics. For the past four years, from subjects suspected to be clinically affected, we found 16 positive cases among a randomly selected cohort of 41 Indian nomads (Narikuravar) settled in the specific area of Tamil Nadu, India. HGD gene mutation analysis showed that 11 of these patients carry the same homozygous splicing mutation c.87 + 1G > A; in five cases, this mutation was found to be heterozygous, while the second AKU-causing mutation was not identified in these patients. This result indicates that the founder effect and high degree of consanguineous marriages have contributed to AKU among nomads. Eleven positive samples were homozygous for a novel mutation c.87 + 1G > A, that abolishes an intron 2 donor splice site and most likely causes skipping of exon 2. The prevalence of AKU observed earlier seems to be highly increased in people of nomadic origin.


Subject(s)
Alkaptonuria/epidemiology , Alkaptonuria/genetics , Ethnicity/genetics , Homogentisate 1,2-Dioxygenase/genetics , Alkaptonuria/pathology , Base Sequence , Chromatography, Thin Layer , DNA Mutational Analysis , Founder Effect , Genes, Recessive/genetics , Genetic Testing , Humans , India/epidemiology , Molecular Sequence Data , Mutation/genetics , Prevalence , Urinalysis/methods
3.
Chembiochem ; 15(18): 2693-702, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25403886

ABSTRACT

The cytotoxic complex formed between α-lactalbumin and oleic acid (OA) has inspired many studies on protein-fatty acid complexes, but structural insight remains sparse. After having used small-angle X-ray scattering (SAXS) to obtain structural information, we present a new, generic structural model of cytotoxic protein-oleic acid complexes, which we have termed liprotides (lipids and partially denatured proteins). Twelve liprotides formed from seven structurally unrelated proteins and prepared by different procedures all displayed core-shell structures, each with a micellar OA core and a shell consisting of flexible, partially unfolded protein, which stabilizes the OA micelle. The common structure explains similar effects exerted on cells by different liprotides and is consistent with a cargo off-loading of the OA into cell membranes.


Subject(s)
Cytotoxins/chemistry , Oleic Acids/chemistry , Proteins/chemistry , Animals , Cattle , Cytotoxins/pharmacology , Hemolysis/drug effects , Micelles , Oleic Acids/pharmacology , Protein Denaturation , Protein Folding , Proteins/pharmacology , Scattering, Small Angle , X-Ray Diffraction
4.
Nat Commun ; 11(1): 5816, 2020 11 16.
Article in English | MEDLINE | ID: mdl-33199730

ABSTRACT

Primary microcephaly (MCPH) is characterized by reduced brain size and intellectual disability. The exact pathophysiological mechanism underlying MCPH remains to be elucidated, but dysfunction of neuronal progenitors in the developing neocortex plays a major role. We identified a homozygous missense mutation (p.W155C) in Ribosomal RNA Processing 7 Homolog A, RRP7A, segregating with MCPH in a consanguineous family with 10 affected individuals. RRP7A is highly expressed in neural stem cells in developing human forebrain, and targeted mutation of Rrp7a leads to defects in neurogenesis and proliferation in a mouse stem cell model. RRP7A localizes to centrosomes, cilia and nucleoli, and patient-derived fibroblasts display defects in ribosomal RNA processing, primary cilia resorption, and cell cycle progression. Analysis of zebrafish embryos supported that the patient mutation in RRP7A causes reduced brain size, impaired neurogenesis and cell proliferation, and defective ribosomal RNA processing. These findings provide novel insight into human brain development and MCPH.


Subject(s)
Cilia/metabolism , Microcephaly/genetics , Neurogenesis , Organelle Biogenesis , RNA-Binding Proteins/genetics , Ribosomes/metabolism , Adult , Animals , Base Sequence , Brain/embryology , Brain/pathology , Cell Cycle , Cell Nucleolus/metabolism , Centrosome/metabolism , Female , Fibroblasts/metabolism , Fibroblasts/pathology , Humans , Male , Mice , Mutation/genetics , Neural Stem Cells/metabolism , Nuclear Proteins/metabolism , Pakistan , Pedigree , Protein Binding , RNA Processing, Post-Transcriptional , RNA, Ribosomal/genetics , RNA-Binding Proteins/metabolism , Zebrafish/embryology
SELECTION OF CITATIONS
SEARCH DETAIL