Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Cryobiology ; 96: 85-91, 2020 10.
Article in English | MEDLINE | ID: mdl-32750360

ABSTRACT

Lyophilization is commonly used to effectively preserve the stability of bacteriophages (phages) in long-term storage. However, information regarding the lyophilization of phages specific to Shiga toxin-producing Escherichia coli (STEC) strains is scarce. The objective of this study was to determine the effects of lyophilization with different cryoprotectants (sucrose and trehalose) and concentrations (0.1 M and 0.5 M) on the stability of seven lytic phages specific to STEC O157 and top 6 non-O157 strains during 6-month storage at -80 °C. The titers of lyophilized phages specific to STEC O26 (S1 O26) and STEC O121 (Pr121lvw) did not exhibit significant reduction after 6-month storage regardless of the use of cryoprotectants. Phages lytic against STEC O103 (Ro103C3lw) and STEC O145 (Ro145clw) with 0.1 M sucrose retained similar titers after lyophilization and frozen storage for 6 months (P > 0.05). Despite subtle differences, these results indicated that most of the selected phages had similar titer retention with the same cryoprotectants. Additionally, lytic activities of the phages against their primary hosts were not affected after lyophilization and 6-month frozen storage. Moreover, no detectable damage was observed on the lyophilized phage structures. These findings provide valuable insight into the use of lyophilization to preserve phages lytic against STEC strains.


Subject(s)
Bacteriophages , Escherichia coli Proteins , Shiga-Toxigenic Escherichia coli , Cryopreservation/methods , Escherichia coli Proteins/genetics , Freeze Drying , Serogroup
2.
Foodborne Pathog Dis ; 12(2): 118-21, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25646966

ABSTRACT

Traditionally, serotyping of Escherichia coli has been performed via slide agglutination methods using antisera. More recently, multiplex immunoassays and "molecular serotyping" via polymerase chain reaction (PCR) have been validated for this purpose. In this study, the serogroups of 161 Shiga toxin-producing Escherichia coli (STEC) strains isolated from fecal samples of California cattle were typed by conventional methods using antisera as well as two newly developed multiplex PCR- and antibody-based microbead assays using the Luminex technology. Using the Luminex assays, we were capable of serotyping 11 STEC isolates that were previously determined untypeable for the O antigen by conventional methods using antisera. Except for 14 isolates, results from the 2 Luminex assays agreed.


Subject(s)
Shiga-Toxigenic Escherichia coli/classification , Animals , California , Cattle , Escherichia coli Proteins/analysis , Feces/microbiology , Fluorescence Polarization Immunoassay , Microspheres , Molecular Typing , Multiplex Polymerase Chain Reaction , O Antigens/analysis , Serotyping , Shiga-Toxigenic Escherichia coli/isolation & purification , Shiga-Toxigenic Escherichia coli/metabolism
3.
Sci Rep ; 14(1): 12294, 2024 05 29.
Article in English | MEDLINE | ID: mdl-38811648

ABSTRACT

Salmonella is a primary enteric pathogen related to the contamination of poultry and other food products in numerous foodborne outbreaks. The continuous emergence of multidrug-resistant bacteria has become a serious issue due to the overuse of antibiotics. Hence, lytic phages are considered alternative biocontrol agents against these bacterial superbugs. Here, two Salmonella phages-S4lw and D5lw-were subjected to genomic and biological characterization and further encapsulated to improve the stability under acidic conditions mimicking gastrointestinal conditions. The two lytic phages, S4lw and D5lw, taxonomically belong to new species under the Guernseyvirinae and Ackermannviridae families, respectively. Each phage showed antimicrobial activities against diverse Salmonella spp., such as S. Enteritidis and S. Typhimurium, achieving 1.7-3.4 log reduction after 2-6 h of treatment. The phage cocktail at a multiplicity of infection (MOI) of 100 or 1000 completely inhibited these Salmonella strains for at least 14 h at 25 °C. Additionally, the bead-encapsulated phage cocktail could withstand low pH and different simulated gut environments for at least 1 h. Overall, the newly isolated phages can potentially mitigate Salmonella spp. under the gastrointestinal environments through encapsulation and may be further applied via oral administration to resolve common antimicrobial resistance issues in the poultry production chain.


Subject(s)
Salmonella Phages , Salmonella , Salmonella Phages/physiology , Salmonella/virology , Animals , Genome, Viral , Gastrointestinal Tract/microbiology , Gastrointestinal Tract/virology , Biological Control Agents , Hydrogen-Ion Concentration
4.
Front Microbiol ; 14: 1302032, 2023.
Article in English | MEDLINE | ID: mdl-38318127

ABSTRACT

Introduction: Shiga toxin-producing Escherichia coli (STEC) O157:H7 is one of the notorious foodborne pathogens causing high mortality through the consumption of contaminated food items. The food safety risk from STEC pathogens could escalate when a group of bacterial cells aggregates to form a biofilm. Bacterial biofilm can diminish the effects of various antimicrobial interventions and enhance the pathogenicity of the pathogens. Therefore, there is an urgent need to have effective control measurements. Bacteriophages can kill the target bacterial cells through lytic infection, and some enzymes produced during the infection have the capability to penetrate the biofilm for mitigation compared to traditional interventions. This study aimed to characterize a new Escherichia phage vB_EcoS-UDF157lw (or UDF157lw) and determine its antimicrobial efficacy against E. coli O157:H7. Methods: Phage characterization included biological approaches, including phage morphology, one-step growth curve, stability tests (pH and temperature), and genomic approaches (whole-genome sequencing). Later, antimicrobial activity tests, including productive infection against susceptible bacterial strains, in vitro antimicrobial activity, and anti-biofilm, were conducted. Results: UDF157lw is a new member of the phages belonging to the Rogunavirus genus, comprising a long and non-contractile tail, isolated from bovine feces and shares close genomic evolutionary similarities with Escherichia phages vB_EcoS-BECP10 and bV_EcoS_AKS96. When used against E. coli O157:H7 (ATCC35150), phage UDF157lw exhibited a latent period of 14 min and a burst size of 110 PFU per infected cell. The phage remained viable in a wide range of pH values (pH 4-11) and temperatures (4-60°C). No virulence genes, such as stx, lysogenic genes, and antibiotic resistance genes, were found. Phage UDF157lw demonstrated high infection efficiencies against different E. coli O157:H7 and generic E. coli strains. In addition, UDF157lw encoded a unique major tail protein (ORF_26) with prominent depolymerase enzyme activity against various E. coli O157:H7 strains, causing large plaque sizes. In contrast to the phage without encoding depolymerase gene, UDF157lw was able to reduce the 24-h and 48-h E. coli O157:H7 biofilm after 1-h phage treatment. Discussion: The findings of this study provide insights into a new member of the Rogunavirus phages and demonstrate its antimicrobial potential against E. coli O157:H7 in vitro.

5.
Microbiol Spectr ; 10(1): e0222021, 2022 02 23.
Article in English | MEDLINE | ID: mdl-35107386

ABSTRACT

Application of lytic bacteriophages is a promising and alternative intervention technology to relieve antibiotic resistance pressure and control bacterial pathogens in the food industry. Despite the increase of produce-associated outbreaks caused by non-O157 Shiga toxin-producing E. coli (STEC) serogroups, the information of phage application on sprouts to mitigate these pathogens is lacking. Therefore, the objective of this study was to characterize a T4-like Escherichia phage vB_EcoM-Sa45lw (or Sa45lw) for the biocontrol potential of STEC O45 on mung bean seeds. Phage Sa45lw belongs to the Tequatrovirus genus under the Myoviridae family and displays a close evolutionary relationship with a STEC O157-infecting phage AR1. Sa45lw contains a long-tail fiber gene (gp37), sharing high genetic similarity with the counterpart of Escherichia phage KIT03, and a unique tail lysozyme (gp5) to distinguish its host range (STEC O157, O45, ATCC 13706, and Salmonella Montevideo and Thompson) from phage KIT03 (O157 and Salmonella enterica). No stx, antibiotic resistance, and lysogenic genes were found in the Sa45lw genome. The phage has a latent period of 27 min with an estimated burst size of 80 PFU/CFU and is stable at a wide range of pH (pH 3 to pH 10.5) and temperatures (-80°C to 50°C). Phage Sa45lw is particularly effective in reducing E. coli O45:H16 both in vitro (MOI = 10) by 5 log and upon application (MOI = 1,000) on the contaminated mung bean seeds for 15 min by 2 log at 25°C. These findings highlight the potential of phage application against non-O157 STEC on sprout seeds. IMPORTANCE Seeds contaminated with foodborne pathogens, such as Shiga toxin-producing E. coli, are the primary sources of contamination in produce and have contributed to numerous foodborne outbreaks. Antibiotic resistance has been a long-lasting issue that poses a threat to human health and the food industry. Therefore, developing novel antimicrobial interventions, such as bacteriophage application, is pivotal to combat these pathogens. This study characterized a lytic bacteriophage Sa45lw as an alternative antimicrobial agent to control pathogenic E. coli on the contaminated mung bean seeds. The phage exhibited antimicrobial effects against both pathogenic E. coli and Salmonella without containing virulent or lysogenic genes that could compromise the safety of phage application. In addition, after 15 min of phage treatment, Sa45lw mitigated E. coli O45:H16 on the contaminated mung bean seeds by a 2-log reduction at room temperature, demonstrating the biocontrol potential of non-O157 Shiga toxin-producing E. coli on sprout seeds.


Subject(s)
Bacteriophages/physiology , Food Contamination/prevention & control , Food Preservation/methods , Myoviridae/physiology , Seeds/microbiology , Shiga-Toxigenic Escherichia coli/virology , Vigna/microbiology , Bacteriophages/classification , Bacteriophages/genetics , Food Contamination/analysis , Phylogeny , Shiga Toxin/metabolism , Shiga-Toxigenic Escherichia coli/genetics , Shiga-Toxigenic Escherichia coli/metabolism
6.
Microorganisms ; 11(1)2022 Dec 27.
Article in English | MEDLINE | ID: mdl-36677369

ABSTRACT

Lytic bacteriophages are re-considered as a solution to resolve antibiotic-resistant rampage. Despite frequent foodborne outbreaks caused by the top six non-O157 Shiga-toxin-producing Escherichia coli (STEC), the current interventions are not sufficiently effective against each serogroup, particularly O45. Therefore, this study aimed to characterize a new short-tailed phage, vB_EcoP-Ro45lw (or Ro45lw), as an alternative antimicrobial agent for STEC O45 strains. Phage Ro45lw belongs to the Kayfunavirus genus within the Autographiviridae family and shares no close evolutionary relationship with any reference phages. Ro45lw contains a tail structure composed of a unique tail fiber and tail tubular proteins A and B, likely to produce enzymatic activity against the target bacterial cells besides structural function. Additionally, the phage genome does not contain virulent, antibiotic-resistant, or lysogenic genes. The phage has a latent period of 15 min with an estimated burst size of 55 PFU/CFU and is stable at a wide range of pH (pH4 to pH11) and temperatures (30 °C to 60 °C). Regardless of the MOIs (MOI = 0.1, 1, and 10) used, Ro45lw has a strong antimicrobial activity against both environmental (E. coli O45:H-) and clinical (E. coli O45:H2) strains at 25 °C. These findings indicate that phage Ro45lw has antimicrobial potential in mitigating pathogenic STEC O45 strains.

7.
Microbiol Resour Announc ; 11(4): e0004122, 2022 Apr 21.
Article in English | MEDLINE | ID: mdl-35254108

ABSTRACT

Here, we report a complete genome sequence of Escherichia phage vB_EcoM-S1P5QW, a T4-like bacteriophage that was isolated from manures collected from cattle farms in Maine. Escherichia phage vB_EcoM-S1P5QW can infect Escherichia coli O26:H11 strains and is devoid of virulence, antibiotic resistance, and lysogeny-associated genes, which may be meaningful for further biocontrol studies.

8.
Front Microbiol ; 13: 1053583, 2022.
Article in English | MEDLINE | ID: mdl-36439834

ABSTRACT

Seeds are one of the primary sources of contamination with foodborne pathogens, such as pathogenic Escherichia coli, and various Salmonella serovars, for produce, particularly sprouts. Due to the susceptibility of sprout growth to chemical-based antimicrobials and the rising issue of antimicrobial resistance, developing innovative antimicrobial interventions is an urgent need. Therefore, the objective of this study was to characterize Escherichia phage Sa157lw (or Sa157lw) for the biocontrol potential of Salmonella Typhimurium and E. coli O157:H7 on contaminated mung bean seeds. Phage Sa157lw was subjected to whole-genome sequencing and biological characterization, including morphology, one-step growth curve, and stress stability tests. Later, antimicrobial activity was determined in vitro and upon application on the mung bean seeds artificially contaminated with E. coli O157:H7 or Salmonella Typhimurium. Sa157lw possessed a contractile tail and belonged to the Kuttervirus genus under the Ackermannviridae family, sharing a close evolutionary relationship with E. coli phage ECML-4 and Kuttervirus ViI; however, tail spike genes (ORF_102 and ORF_104) were the primary region of difference. Comparative genomics showed that Sa157lw encoded a cluster of tail spike genes-including ORF_101, ORF_102, and ORF_104-sharing high amino acid similarity with the counterfeits of various Salmonella phages. Additionally, Sa157lw harbored a unique tail fiber (ORF_103), possibly related to the receptors binding of O157 strains. The genomic evidence accounted for the polyvalent effects of Sa157lw against E. coli O157:H7 and various Salmonella serovars (Typhimurium, Enteritidis, Agona, Saintpaul, and Heidelberg). Furthermore, the phage did not contain any virulence, antibiotic-resistant, or lysogenic genes. Sa157lw had a 30-min latent period on both E. coli O157:H7 and Salmonella Typhimurium, with an estimated burst size of 130 and 220 PFU/CFU, respectively, and was stable at a wide range of temperatures (4-60°C) and pH (pH4 to pH10). The phage application demonstrated a strong anti-E. coli O157:H7 and anti-Salmonella Typhimurium effects in 1.1 and 1.8 log reduction on the contaminated mung bean seeds after overnight storage at 22°C. These findings provide valuable insights into the polyvalent Sa157lw as a potential biocontrol agent of Salmonella Typhimurium and E. coli O157:H7 on sprout seeds.

9.
Front Microbiol ; 12: 587696, 2021.
Article in English | MEDLINE | ID: mdl-33716997

ABSTRACT

Shiga toxin (Stx), encoded by stx genes located in prophage sequences, is the major agent responsible for the pathogenicity of Shiga toxin-producing Escherichia coli (STEC) and is closely associated with the development of hemolytic uremic syndrome (HUS). Although numerous Stx prophage sequences have been reported as part of STEC bacterial genomes, the information about the genomic characterization of Stx-converting bacteriophages induced from STEC strains is relatively scarce. The objectives of this study were to genomically characterize two Stx-converting phages induced from environmental STEC strains and to evaluate their correlations with published Stx-converting phages and STEC strains of different origins. The Stx1-converting phage Lys8385Vzw and the Stx2-converting phage Lys19259Vzw were induced from E. coli O103:H11 (RM8385) and E. coli O157:H7 (RM19259), respectively. Whole-genome sequencing of these phages was conducted on a MiSeq sequencer for genomic characterization. Phylogenetic analysis and comparative genomics were performed to determine the correlations between these two Stx-converting phages, 13 reference Stx-converting phages, and 10 reference STEC genomes carrying closely related Stx prophages. Both Stx-converting phages Lys8385Vzw and Lys19259Vzw had double-stranded DNA, with genome sizes of 50,953 and 61,072 bp, respectively. Approximately 40% of the annotated coding DNA sequences with the predicted functions were likely associated with the fitness for both phages and their bacterial hosts. The whole-genome-based phylogenetic analysis of these two Stx-converting phages and 13 reference Stx-converting phages revealed that the 15 Stx-converting phages were divided into three distinct clusters, and those from E. coli O157:H7, in particular, were distributed in each cluster, demonstrating the high genomic diversity of these Stx-converting phages. The genomes of Stx-converting phage Lys8385Vzw and Lys19259Vzw shared a high-nucleotide similarity with the prophage sequences of the selected STEC isolates from the clinical and environmental origin. The findings demonstrate the genomic diversity of Stx-converting phages induced from different STEC strains and provide valuable insights into the dissemination of stx genes among E. coli population via the lysogenization of Stx-converting phages.

10.
Microorganisms ; 9(7)2021 Jul 17.
Article in English | MEDLINE | ID: mdl-34361962

ABSTRACT

Shiga toxin-producing Escherichia coli (STEC) O103 strains have been recently attributed to various foodborne outbreaks in the United States. Due to the emergence of antibiotic-resistant strains, lytic phages are considered as alternative biocontrol agents. This study was to biologically and genomically characterize two STEC O103-infecting bacteriophages, vB_EcoP-Ro103C3lw (or Ro103C3lw) and vB_EcoM-Pr103Blw (or Pr103Blw), isolated from an organic farm. Based on genomic and morphological analyses, phages Ro103C3lw and Pr103Blw belonged to Autographiviridae and Myoviridae families, respectively. Ro103C3lw contained a 39,389-bp double-stranded DNA and encoded a unique tail fiber with depolymerase activity, resulting in huge plaques. Pr103Blw had an 88,421-bp double-stranded DNA with 26 predicted tRNAs associated with the enhancement of the phage fitness. Within each phage genome, no virulence, antibiotic-resistant, and lysogenic genes were detected. Additionally, Ro103C3lw had a short latent period (2 min) and a narrow host range, infecting only STEC O103 strains. By contrast, Pr103Blw had a large burst size (152 PFU/CFU) and a broad host range against STEC O103, O26, O111, O157:H7, and Salmonella Javiana strains. Furthermore, both phages showed strong antimicrobial activities against STEC O103:H2 strains. The findings provide valuable insight into these two phages' genomic features with the potential antimicrobial activities against STEC O103.

11.
Microbiol Resour Announc ; 9(12)2020 Mar 19.
Article in English | MEDLINE | ID: mdl-32193236

ABSTRACT

Diverse Shiga toxin-producing Escherichia coli (STEC) strains have been isolated from several environmental samples. Rivers are associated with the distribution of STEC pathogens in the environment. Thus, we report the complete genome sequence of a locus of enterocyte effacement (LEE)-positive STEC O157:H7 strain isolated from the Mississippi River.

12.
PLoS One ; 15(6): e0234438, 2020.
Article in English | MEDLINE | ID: mdl-32525945

ABSTRACT

Shiga toxin-producing Escherichia coli (STECs) contamination of produce, as a result of contact with ruminant fecal material, has been associated with serious foodborne illness. Bacteriophages (phages) that infect STECs have primarily been reported to be of cattle origin. However, they likely exist in other environments or in animals that share habitats with cattle, such as goats. To explore the presence and diversity of phages specific to STEC O157 and the top six non-O157 STECs in goat-associated environments, environmental samples consisting of feces (goat and cattle) and soil samples were collected monthly for six months from an organic produce farm. A variety of phages belonging to the Myoviridae, Siphoviridae, and Podoviridae families were isolated from all goat fecal and half of the soil samples. The most commonly isolated phages belonged to Myoviridae and were lytic against STEC O103. The isolated phages had different host ranges, but collectively, showed lytic activity against O157 and the top six non-O157 STEC strains excluding O121. Two non-O157 STECs (O174: H21 and O-antigen-negative: H18) were isolated from soil and cattle feces, respectively. Although prior studies have reported that goats shed STEC into the environment, the findings of the current study suggest that goat feces may also contain lytic STEC-specific phages. The phages of goat origin have the capacity to infect STECs implicated in causing foodborne outbreaks, making them potential candidates for biocontrol pending additional characterization steps. Further work is needed to determine if the addition of goats to the farm environment could potentially reduce the presence of STECs.


Subject(s)
Bacteriophages/isolation & purification , Feces/virology , Goats/microbiology , Shiga-Toxigenic Escherichia coli/virology , Animal Husbandry/methods , Animals , Bacteriophages/genetics , California , Cattle/microbiology , DNA, Viral/isolation & purification , Escherichia coli Infections/microbiology , Escherichia coli Infections/prevention & control , Farms , Food, Organic/microbiology , Foodborne Diseases/microbiology , Foodborne Diseases/prevention & control , Soil Microbiology
13.
Microbiol Resour Announc ; 8(36)2019 Sep 05.
Article in English | MEDLINE | ID: mdl-31488531

ABSTRACT

Although numerous Shiga toxin (Stx)-producing Escherichia coli (STEC) strains have been sequenced, genomic information on Stx-converting phages, highly related to the primary virulence factors of STEC, is scarce. Here, we report the complete genome sequence of a Stx-converting phage induced from an outbreak STEC O145 strain.

14.
Microbiol Resour Announc ; 8(32)2019 Aug 08.
Article in English | MEDLINE | ID: mdl-31395650

ABSTRACT

Escherichia phage vB_EcoM-Sa45lw, a new member of the T4-like phages, was isolated from surface water in a produce-growing area. The phage, containing double-stranded DNA with a genome size of 167,353 bp and 282 predicted open reading frames (ORFs), is able to infect generic Escherichia coli and Shiga toxin-producing E. coli O45 and O157 strains.

15.
Front Microbiol ; 10: 3093, 2019.
Article in English | MEDLINE | ID: mdl-32038541

ABSTRACT

Shiga toxin-producing Escherichia coli (STEC) is a notorious foodborne pathogen containing stx genes located in the sequence region of Shiga toxin (Stx) prophages. Stx prophages, as one of the mobile elements, are involved in the transfer of virulence genes to other strains. However, little is known about the diversity of prophages among STEC strains. The objectives of this study were to predict various prophages from different STEC genomes and to evaluate the effect of different stress factors on Stx prophage induction. Forty bacterial whole-genome sequences of STEC strains obtained from National Center for Biotechnology Information (NCBI) were used for the prophage prediction using PHASTER webserver. Eight of the STEC strains from different serotypes were subsequently selected to quantify the induction of Stx prophages by various treatments, including antibiotics, temperature, irradiation, and antimicrobial agents. After induction, Stx1-converting phage Lys8385Vzw and Stx2-converting phage Lys12581Vzw were isolated and further confirmed for the presence of stx genes using conventional PCR. Phage morphology was observed by transmission electron microscopy. The prediction results showed an average of 8-22 prophages, with one or more encoding stx, were predicted from each STEC genome obtained in this study. Additionally, the phylogenetic analysis revealed high genetic diversity of Stx prophages among the 40 STEC genomes. However, the sequences of Stx prophages in the genomes of STEC O45, O111, and O121 strains, in general, shared higher genetic homology than those in other serotypes. Interestingly, most STEC strains with two or more stx genes carried at least one each of Stx1 and Stx2 prophages. The induction results indicated EDTA and UV were the most effective inducers of Stx1 and Stx2 prophages of the 8 selected STECs, respectively. Additionally, both Stx-converting phages could infect non-pathogenic E. coli (WG5, DH5α, and MG1655) and form new lysogens. The findings of this study confirm that Stx prophages can be induced by environmental stress, such as exposure to solar radiation, and lysogenize other commensal E. coli strains.

16.
Antibiotics (Basel) ; 8(2)2019 Jun 05.
Article in English | MEDLINE | ID: mdl-31195679

ABSTRACT

Shiga toxin-producing Escherichia coli (STEC) O145 is one of the most prevalent non-O157 serogroups associated with foodborne outbreaks. Lytic phages are a potential alternative to antibiotics in combatting bacterial pathogens. In this study, we characterized a Siphoviridae phage lytic against STEC O145 strains as a novel antimicrobial agent. Escherichia phage vB_EcoS-Ro145clw (Ro145clw) was isolated and purified prior to physiological and genomic characterization. Then, in vitro antimicrobial activity against an outbreak strain, E. coli O145:H28, was evaluated. Ro145clw is a double-stranded DNA phage with a genome 42,031 bp in length. Of the 67 genes identified in the genome, 21 were annotated with functional proteins, none of which were stx genes. Ro145clw had a latent period of 21 min and a burst size of 192 phages per infected cell. The phage could sustain a wide range of pH (pH 3 to pH 10) and temperatures (-80 °C to -73 °C). Ro145clw was able to reduce E. coli O145:H28 in lysogeny broth by approximately 5 log at 37 °C in four hours. These findings indicate that the Ro145clw phage is a promising antimicrobial agent that can be used to control E. coli O145 in adverse pH and temperature conditions.

17.
Front Microbiol ; 10: 627, 2019.
Article in English | MEDLINE | ID: mdl-31001216

ABSTRACT

Composting is a complex biodegradable process that converts organic materials into nutrients to facilitate crop yields, and, if well managed, can render bactericidal effects. Majority of research focused on detection of enteric pathogens, such as Shiga toxin-producing Escherichia coli (STEC) in fecal composts. Recently, attention has been emphasized on bacteriophages, such as STEC-specific bacteriophages, associated with STEC from the fecal-contaminated environment because they are able to sustain adverse environmental condition during composting process. However, little is known regarding the isolation of STEC-specific bacteriophages in non-fecal composts. Thus, the objectives were to isolate and genomically characterize STEC-specific bacteriophages, and to evaluate its association with STEC in non-fecal composts. For bacteriophage isolation, the samples were enriched with non-pathogenic E. coli (3 strains) and STEC (14 strains), respectively. After purification, host range, plaque size, and phage morphology were examined. Furthermore, bacteriophage genomes were subjected to whole-genome sequencing using Illumina MiSeq and genomic analyses. Isolation of top six non-O157 and O157 STEC utilizing culture methods combined with PCR-based confirmation was also conducted. The results showed that various STEC-specific bacteriophages, including vB_EcoM-Ro111lw, vB_EcoM-Ro121lw, vB_EcoS-Ro145lw, and vB_EcoM-Ro157lw, with different but complementary host ranges were isolated. Genomic analysis showed the genome sizes varied from 42kb to 149kb, and most bacteriophages were unclassified at the genus level, except vB_EcoM-Ro111lw as FelixO1-like viruses. Prokka predicted less than 25% of the ORFs coded for known functions, including those essential for DNA replication, bacteriophage structure, and host cell lysis. Moreover, none of the bacteriophages harbored lysogenic genes or virulence genes, such as stx or eae. Additionally, the presence of these lytic bacteriophages was likely attributed to zero isolation of STEC and could also contribute to additional antimicrobial effects in composts, if the composting process was insufficient. Current findings indicate that various STEC-specific bacteriophages were found in the non-fecal composts. In addition, the genomic characterization provides in-depth information to complement the deficiency of biological features regarding lytic cycle of the new bacteriophages. Most importantly, these bacteriophages have great potential to control various serogroups of STEC.

18.
PLoS One ; 13(1): e0190534, 2018.
Article in English | MEDLINE | ID: mdl-29300761

ABSTRACT

Shiga toxin-producing E. coli (STEC) causes approximately 265,000 illnesses and 3,600 hospitalizations annually and is highly associated with animal contamination due to the natural reservoir of ruminant gastrointestinal tracts. Free STEC-specific bacteriophages against STEC strains are also commonly isolated from fecal-contaminated environment. Previous studies have evaluated the correlation between the prevalence of STEC-specific bacteriophages and STEC strains to improve animal-associated environment. However, the similar information regarding free STEC-specific bacteriophages prevalence in produce growing area is lacking. Thus, the objectives of this research were to determine the prevalence of STEC-specific phages, analyze potential effects of environmental factors on the prevalence of the phages, and study correlations between STEC-specific bacteriophages and the bacterial hosts in pre-harvest produce environment. Surface water from 20 samples sites was subjected to free bacteriophage isolation using host strains of both generic E. coli and STEC (O157, six non-O157 and one O179 strains) cocktails, and isolation of O157 and non-O157 STEC strains by use of culture methods combined with PCR-based confirmation. The weather data were obtained from weather station website. Free O145- and O179-specific bacteriophages were the two most frequently isolated bacteriophages among all (O45, O145, O157 and O179) in this study. The results showed June and July had relatively high prevalence of overall STEC-specific bacteriophages with minimum isolation of STEC strains. In addition, the bacteriophages were likely isolated in the area-around or within city-with predominant human impact, whereas the STEC bacterial isolates were commonly found in agriculture impact environment. Furthermore, there was a trend that the sample sites with positive of free STEC bacteriophage did not have the specific STEC bacterial hosts. The findings of the study enable us to understand the ecology between free STEC-specific phages and STEC bacteria for further pre-harvest food safety management in produce environment.


Subject(s)
Coliphages/metabolism , Shiga-Toxigenic Escherichia coli/virology , California , Microscopy, Electron, Transmission , Polymerase Chain Reaction , Prevalence
19.
J Plant Physiol ; 190: 36-43, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26638146

ABSTRACT

For grafted plants, salt stress tolerance of the aerial plant part is poorly documented. Thus, we developed a simple, fast and inexpensive method to identify tolerant genotypes. Twigs of 14 mandarin accessions that we previously analyzed as seedlings were cut in solution to prevent embolism and were then evaluated in salt stress condition for a week. Physiological parameters such as gas exchanges, leaf Cl(-) and Na(+), as well as the presence of H2O2 and the activity of enzymes involved in ROS synthesis and detoxification processes were analyzed. One accession known to be tolerant as rootstock was shown to be sensitive with limited Cl(-) translocation from the solution to the shoot while sensitive accessions when grown as seedlings presented limited wilting symptoms and accumulated large leaf Cl(-) content. A model is proposed to explain the different strategies of the plant to cope with high toxic ion content. This method allows separation of the root compartment, where ion exclusion mechanisms may exist and have an impact on the salt stress tolerance of the whole plant.


Subject(s)
Agriculture/methods , Citrus/physiology , Plant Leaves/physiology , Salt Tolerance , Sodium Chloride/pharmacology , Agriculture/economics , Citrus/genetics , Genotype
20.
Methods Mol Biol ; 1318: 107-18, 2015.
Article in English | MEDLINE | ID: mdl-26160569

ABSTRACT

ELISA is an extremely powerful tool to detect analytes because of its sensitivity, selectivity, reproducibility and ease of use. Here we describe sandwich immunoassays performed in suspension on spectrally unique microspheres developed by Luminex. Luminex assays offer the benefit of multiplex analysis of large numbers of analytes in a single reaction. Because the microspheres are spectrally unique, many microspheres, each attached to various antibodies, can be added to a single sample. Luminex instruments can distinguish each microsphere and detect the intensity of a reporter signal for each microsphere. Results are reported in Median Fluorescent Intensities for each analyte. Luminex assays can be used to detect up to 500 analytes in a high-throughput format. Luminex refers to this technology as xMAP(®). Here we describe a routine protocol for a Luminex immunoassay. Other Luminex assays would have to be optimized for specific conditions according to their use.


Subject(s)
Antibodies/chemistry , Enzyme-Linked Immunosorbent Assay/methods , High-Throughput Screening Assays/instrumentation , Lipopolysaccharides/analysis , Shiga Toxin 1/analysis , Shiga Toxin 2/analysis , Automation, Laboratory , Enzyme-Linked Immunosorbent Assay/instrumentation , Escherichia coli O157/growth & development , Escherichia coli O157/pathogenicity , Microspheres , Phycoerythrin/chemistry , Reproducibility of Results , Suspensions/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL