Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
1.
Int J Mol Sci ; 25(2)2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38256204

ABSTRACT

The mechanistic influences of dopamine (DA) signaling and impact on motor function are nearly always interpreted from changes in nigrostriatal neuron terminals in striatum. This is a standard practice in studies of human Parkinson's disease (PD) and aging and related animal models of PD and aging-related parkinsonism. However, despite dozens of studies indicating an ambiguous relationship between changes in striatal DA signaling and motor phenotype, this perseverating focus on striatum continues. Although DA release in substantia nigra (SN) was first reported almost 50 years ago, assessment of nigral DA signaling changes in relation to motor function is rarely considered. Whereas DA signaling has been well-characterized in striatum at all five steps of neurotransmission (biosynthesis and turnover, storage, release, reuptake, and post-synaptic binding) in the nigrostriatal pathway, the depth of such interrogations in the SN, outside of cell counts, is sparse. However, there is sufficient evidence that these steps in DA neurotransmission in the SN are operational and regulated autonomously from striatum and are present in human PD and aging and related animal models. To complete our understanding of how nigrostriatal DA signaling affects motor function, it is past time to include interrogation of nigral DA signaling. This brief review highlights evidence that changes in nigral DA signaling at each step in DA neurotransmission are autonomous from those in striatum and changes in the SN alone can influence locomotor function. Accordingly, for full characterization of how nigrostriatal DA signaling affects locomotor activity, interrogation of DA signaling in SN is essential.


Subject(s)
Dopamine , Parkinson Disease , Animals , Humans , Signal Transduction , Synaptic Transmission , Corpus Striatum , Substantia Nigra
2.
J Biol Chem ; 292(34): 14092-14107, 2017 08 25.
Article in English | MEDLINE | ID: mdl-28637871

ABSTRACT

Tyrosine hydroxylase (TH) catalyzes the conversion of l-tyrosine into l-DOPA, which is the rate-limiting step in the synthesis of catecholamines, such as dopamine, in dopaminergergic neurons. Low dopamine levels and death of the dopaminergic neurons are hallmarks of Parkinson's disease (PD), where α-synuclein is also a key player. TH is highly regulated, notably by phosphorylation of several Ser/Thr residues in the N-terminal tail. However, the functional role of TH phosphorylation at the Ser-31 site (THSer(P)-31) remains unclear. Here, we report that THSer(P)-31 co-distributes with the Golgi complex and synaptic-like vesicles in rat and human dopaminergic cells. We also found that the TH microsomal fraction content decreases after inhibition of cyclin-dependent kinase 5 (Cdk5) and ERK1/2. The cellular distribution of an overexpressed phospho-null mutant, TH1-S31A, was restricted to the soma of neuroblastoma cells, with decreased association with the microsomal fraction, whereas a phospho-mimic mutant, TH1-S31E, was distributed throughout the soma and neurites. TH1-S31E associated with vesicular monoamine transporter 2 (VMAT2) and α-synuclein in neuroblastoma cells, and endogenous THSer(P)-31 was detected in VMAT2- and α-synuclein-immunoprecipitated mouse brain samples. Microtubule disruption or co-transfection with α-synuclein A53T, a PD-associated mutation, caused TH1-S31E accumulation in the cell soma. Our results indicate that Ser-31 phosphorylation may regulate TH subcellular localization by enabling its transport along microtubules, notably toward the projection terminals. These findings disclose a new mechanism of TH regulation by phosphorylation and reveal its interaction with key players in PD, opening up new research avenues for better understanding dopamine synthesis in physiological and pathological states.


Subject(s)
Dopaminergic Neurons/enzymology , Golgi Apparatus/enzymology , Microtubules/enzymology , Protein Processing, Post-Translational , Serine/metabolism , Synaptic Vesicles/enzymology , Tyrosine 3-Monooxygenase/metabolism , Amino Acid Substitution , Animals , Cell Line, Tumor , Dopaminergic Neurons/cytology , Dopaminergic Neurons/metabolism , Golgi Apparatus/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HEK293 Cells , Humans , Microscopy, Confocal , Microscopy, Fluorescence , Microtubules/metabolism , Mutagenesis, Site-Directed , Mutation , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Phosphorylation , Protein Transport , Rats , Recombinant Fusion Proteins/metabolism , Synaptic Vesicles/metabolism , Tyrosine 3-Monooxygenase/genetics
3.
Mov Disord ; 32(11): 1547-1556, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28631864

ABSTRACT

BACKGROUND: Increased extracellular glutamate may contribute to l-dopa induced dyskinesia, a debilitating side effect faced by Parkinson's disease patients 5 to 10 years after l-dopa treatment. Therapeutic strategies targeting postsynaptic glutamate receptors to mitigate dyskinesia may have limited success because of significant side effects. Increasing glutamate uptake may be another approach to attenuate excess glutamatergic neurotransmission to mitigate dyskinesia severity or prolong the time prior to onset. Initiation of a ceftriaxone regimen at the time of nigrostriatal lesion can attenuate tyrosine hydroxylase loss in conjunction with increased glutamate uptake and glutamate transporter GLT-1 expression in a rat 6-hydroxydopamine model. In this article, we examined if a ceftriaxone regimen initiated 1 week after nigrostriatal lesion, but prior to l-dopa, could reduce l-dopa-induced dyskinesia in an established dyskinesia model. METHODS: Ceftriaxone (200 mg/kg, intraperitoneal, once daily, 7 consecutive days) was initiated 7 days post-6-hydroxydopamine lesion (days 7-13) and continued every other week (days 21-27, 35-39) until the end of the study (day 39 postlesion, 20 days of l-dopa). RESULTS: Ceftriaxone significantly reduced abnormal involuntary movements at 5 time points examined during chronic l-dopa treatment. Partial recovery of motor impairment from nigrostriatal lesion by l-dopa was unaffected by ceftriaxone. The ceftriaxone-treated l-dopa group had significantly increased striatal GLT-1 expression and glutamate uptake. Striatal tyrosine hydroxylase loss in this group was not significantly different when compared with the l-dopa alone group. CONCLUSIONS: Initiation of ceftriaxone after nigrostriatal lesion, but prior to and during l-dopa, may reduce dyskinesia severity without affecting l-dopa efficacy or the reduction of striatal tyrosine hydroxylase loss. © 2017 International Parkinson and Movement Disorder Society.


Subject(s)
Anti-Bacterial Agents/pharmacology , Ceftriaxone/pharmacology , Dopamine Agents/pharmacology , Dyskinesia, Drug-Induced/prevention & control , Excitatory Amino Acid Transporter 2/drug effects , Levodopa/pharmacology , Parkinson Disease/drug therapy , Animals , Anti-Bacterial Agents/administration & dosage , Ceftriaxone/administration & dosage , Disease Models, Animal , Dopamine Agents/administration & dosage , Dopamine Agents/adverse effects , Levodopa/administration & dosage , Levodopa/adverse effects , Male , Oxidopamine/pharmacology , Rats , Rats, Sprague-Dawley , Sympatholytics/pharmacology
4.
Mol Pharmacol ; 86(6): 675-85, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25208966

ABSTRACT

Pharmacological dopamine (DA) replacement with Levodopa [L-dihydroxyphenylalanine (L-DOPA)] is the gold standard treatment of Parkinson's disease (PD). However, long-term L-DOPA treatment is complicated by eventual debilitating abnormal involuntary movements termed L-DOPA-induced dyskinesia (LID), a clinically significant obstacle for the majority of patients who rely on L-DOPA to alleviate PD-related motor symptoms. The manifestation of LID may in part be driven by excessive extracellular DA derived from L-DOPA, but potential involvement of DA reuptake in LID severity or expression is unknown. We recently reported that in 6-hydroxydopamine (6-OHDA)-lesioned striatum, norepinephrine transporter (NET) expression increases and may play a significant role in DA transport. Furthermore, L-DOPA preferentially inhibits DA uptake in lesioned striatum. Therefore, we hypothesized that desipramine (DMI), a NET antagonist, could affect the severity of LID in an established LID model. Whereas DMI alone elicited no dyskinetic effects in lesioned rats, DMI + L-DOPA-treated rats gradually expressed more severe dyskinesia compared with L-DOPA alone over time. At the conclusion of the study, we observed reduced NET expression and norepinephrine-mediated inhibition of DA uptake in the DMI + L-DOPA group compared with L-DOPA-alone group in lesioned striatum. LID severity positively correlated with striatal extracellular signal-regulated protein kinase phosphorylation among the three treatment groups, with increased ppERK1/2 in DMI + L-DOPA group compared with the L-DOPA- and DMI-alone groups. Taken together, these results indicate that the combination of chronic L-DOPA and NET-mediated DA reuptake in lesioned nigrostriatal terminals may have a role in LID severity in experimental Parkinsonism.


Subject(s)
Corpus Striatum/physiology , Desipramine/pharmacology , Dopamine/physiology , Dyskinesia, Drug-Induced/etiology , Levodopa/toxicity , Norepinephrine Plasma Membrane Transport Proteins/antagonists & inhibitors , Substantia Nigra/physiology , Synapses/physiology , Animals , Denervation , Extracellular Signal-Regulated MAP Kinases/metabolism , Male , Phosphorylation , Rats , Rats, Sprague-Dawley
5.
J Neurochem ; 129(3): 548-58, 2014 May.
Article in English | MEDLINE | ID: mdl-24410633

ABSTRACT

Compensatory mechanisms in dopamine (DA) signaling have long been proposed to delay onset of locomotor symptoms during Parkinson's disease progression until ~ 80% loss of striatal DA occurs. Increased striatal dopamine turnover has been proposed to be a part of this compensatory response, but may occur after locomotor symptoms. Increased tyrosine hydroxylase (TH) activity has also been proposed as a mechanism, but the impact of TH protein loss upon site-specific TH phosphorylation in conjunction with the impact on DA tissue content is not known. The tissue content of DA was determined against TH protein loss in the striatum and substantia nigra (SN) following 6-hydroxydopamine lesion in the medial forebrain bundle in young Sprague-Dawley male rats. Although DA predictably decreased in both regions following 6-hydroxydopamine, there was a significant difference in DA loss between the striatum (75%) and SN (40%), despite similar TH protein loss. Paradoxically, there was a significant decrease in DA against remaining TH protein in striatum, but a significant increase in DA against remaining TH in SN. In the SN, increased DA per remaining TH protein was matched by increased ser31, but not ser40, TH phosphorylation. In striatum, both ser31 and ser40 phosphorylation decreased, reflecting decreased DA per TH. However, in control nigral and striatal tissue, only ser31 phosphorylation correlated with DA per TH protein. Combined, these results suggest that the phosphorylation of ser31 in the SN may be a mechanism to increase DA biosynthesis against TH protein loss in an in vivo model of Parkinson's disease. Properties of dopamine biosynthesis were evaluated in the 6-OHDA model of Parkinson's disease by studying the impact of tyrosine hydroxylase (TH) protein loss on its own phosphorylation and dopamine (DA) tissue content in rat nigrostriatal pathway. A dichotomous response was observed between striatum and substantia nigra in that dopamine per remaining TH decreased in striatum, but increased in substantia nigra. Phosphorylation at ser31 reflected these differences, indicating that ser31 phosphorylation may be critical to maintain dopamine with progressive TH protein loss. Drawings are from slides purchased from Motifolio (http://motifolio.com/).


Subject(s)
Corpus Striatum/metabolism , Dopamine/metabolism , Parkinsonian Disorders/metabolism , Substantia Nigra/metabolism , Tyrosine 3-Monooxygenase/chemistry , Animals , Blotting, Western , Chromatography, High Pressure Liquid , Corpus Striatum/chemistry , Dopamine/analysis , Male , Oxidopamine , Phosphorylation , Rats , Rats, Sprague-Dawley , Serine/metabolism , Substantia Nigra/chemistry , Tyrosine 3-Monooxygenase/analysis , Tyrosine 3-Monooxygenase/metabolism
6.
Front Neurosci ; 18: 1390215, 2024.
Article in English | MEDLINE | ID: mdl-38817910

ABSTRACT

Cognitive decline in Parkinson's disease (PD) is a critical premotor sign that may occur in approximately 40% of PD patients up to 10 years prior to clinical recognition and diagnosis. Delineating the mechanisms and specific behavioral signs of cognitive decline associated with PD prior to motor impairment is a critical unmet need. Rodent PD models that have an impairment in a cognitive phenotype for a time period sufficiently long enough prior to motor decline can be useful to establish viable candidate mechanisms. Arguably, the methods used to evaluate cognitive decline in rodent models should emulate methods used in the assessment of humans to optimize translation. Premotor cognitive decline in human PD can potentially be examined in the genetically altered PINK1-/- rat model, which exhibits a protracted onset of motor decline in most studies. To increase translation to cognitive assessment in human PD, we used a modified non-water multiple T-maze, which assesses attention, cognitive flexibility, and working memory similarly to the Trail Making Test (TMT) in humans. Similar to the deficiencies revealed in TMT test outcomes in human PD, 4-month-old PINK1-/- rats made more errors and took longer to complete the maze, despite a hyperkinetic phenotype, compared to wild-type rats. Thus, we have identified a potential methodological tool with cross-species translation to evaluate executive functioning in an established PD rat model.

7.
bioRxiv ; 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38293068

ABSTRACT

Cognitive decline in Parkinson's disease (PD) emerges up to 10 years before clinical recognition. Neurobiological mechanisms underlying premotor cognitive impairment in PD can potentially be examined in the PINK1 -/- rat, which exhibits a protracted motor onset. To enhance translation to human PD cognitive assessments, we tested a modified multiple T-maze, which measures cognitive flexibility similarly to the Trail-Making Test in humans. Like human PD outcomes, PINK1 -/- rats made more errors and took longer to complete the maze than wild types. Thus, we have identified a potential tool for assessing cross-species translation of cognitive functioning in an established PD animal model.

8.
Exp Neurol ; 376: 114771, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38580154

ABSTRACT

Parkinson's disease (PD) rodent models provide insight into the relationship between nigrostriatal dopamine (DA) signaling and locomotor function. Although toxin-based rat models produce frank nigrostriatal neuron loss and eventual motor decline characteristic of PD, the rapid nature of neuronal loss may not adequately translate premotor traits, such as cognitive decline. Unfortunately, rodent genetic PD models, like the Pink1 knockout (KO) rat, often fail to replicate the differential severity of striatal DA and tyrosine hydroxylase (TH) loss, and a bradykinetic phenotype, reminiscent of human PD. To elucidate this inconsistency, we evaluated aging as a progression factor in the timing of motor and non-motor cognitive impairments. Male PINK1 KO and age-matched wild type (WT) rats were evaluated in a longitudinal study from 3 to 16 months old in one cohort, and in a cross-sectional study of young adult (6-7 months) and aged (18-19 months) in another cohort. Young adult PINK1 KO rats exhibited hyperkinetic behavior associated with elevated DA and TH in the substantia nigra (SN), which decreased therein, but not striatum, in the aged KO rats. Additionally, norepinephrine levels decreased in aged KO rats in the prefrontal cortex (PFC), paired with a higher DA levels in young and aged KO. Although a younger age of onset characterizes familial forms of PD, our results underscore the critical need to consider age-related factors. Moreover, the results indicate that compensatory mechanisms may exist to preserve locomotor function, evidenced by increased DA in the SN early in the lifespan, in response to deficient PINK1 function, which declines with aging and the onset of motor decline.


Subject(s)
Aging , Corpus Striatum , Dopamine , Protein Kinases , Substantia Nigra , Tyrosine 3-Monooxygenase , Animals , Tyrosine 3-Monooxygenase/metabolism , Protein Kinases/genetics , Protein Kinases/deficiency , Protein Kinases/metabolism , Substantia Nigra/metabolism , Aging/genetics , Male , Rats , Dopamine/metabolism , Corpus Striatum/metabolism , Motor Activity/physiology , Motor Activity/genetics , Rats, Transgenic
9.
bioRxiv ; 2024 Feb 04.
Article in English | MEDLINE | ID: mdl-38352365

ABSTRACT

Parkinson's disease (PD) rodent models provide insight into the relationship between nigrostriatal dopamine (DA) signaling and locomotor function. Although toxin-based rat models produce frank nigrostriatal neuron loss and eventual motor decline characteristic of PD, the rapid nature of neuronal loss may not adequately translate premotor traits, such as cognitive decline. Unfortunately, rodent genetic PD models, like the Pink1 knockout (KO) rat, often fail to replicate the differential severity of striatal DA and tyrosine hydroxylase (TH) loss, and a bradykinetic phenotype, reminiscent of human PD. To elucidate this inconsistency, we evaluated aging as a progression factor in the timing of motor and non-motor cognitive impairments. Male PINK1 KO and age-matched wild type (WT) rats were evaluated in a longitudinal study from 3 to 16 months old in one cohort, and in a cross-sectional study of young adult (6-7 months) and aged (18-19 months) in another cohort. Young adult PINK1 KO rats exhibited hyperkinetic behavior associated with elevated DA and TH in the substantia nigra (SN), which decreased therein, but not striatum, in the aged KO rats. Additionally, norepinephrine levels decreased in aged KO rats in the prefrontal cortex (PFC), paired with a higher DA content in young and aged KO. Although a younger age of onset characterizes familial forms of PD, our results underscore the critical need to consider age-related factors. Moreover, the results indicate that compensatory mechanisms may exist to preserve locomotor function, evidenced by increased DA in the SN early in the lifespan, in response to deficient PINK1 function, which declines with aging and the onset of motor impairment.

10.
Exp Neurol ; 379: 114875, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38944332

ABSTRACT

Alleviation of motor impairment by aerobic exercise (AE) in Parkinson's disease (PD) patients points to activation of neurobiological mechanisms that may be targetable by therapeutic approaches. However, evidence for AE-related recovery of striatal dopamine (DA) signaling or tyrosine hydroxylase (TH) loss has been inconsistent in rodent studies. This ambiguity may be related to the timing of AE intervention in relation to the status of nigrostriatal neuron loss. Here, we replicated human PD at diagnosis by establishing motor impairment with >80% striatal DA and TH loss prior to initiating AE, and assessed its potential to alleviate motor decline and restore DA and TH loss. We also evaluated if serum levels of neurofilament light (NfL) and glial fibrillary acidic protein (GFAP), biomarkers of human PD severity, changed in response to AE. 6-hydroxydopamine (6-OHDA) was infused unilaterally into rat medial forebrain bundle to induce progressive nigrostriatal neuron loss over 28 days. Moderate intensity AE (3× per week, 40 min/session), began 8-10 days post-lesion following establishment of impaired forelimb use. Striatal tissue DA, TH protein and mRNA, and serum levels of NfL/GFAP were determined 3-wks after AE began. Despite severe striatal DA depletion at AE initiation, forelimb use deficits and hypokinesia onset were alleviated by AE, without recovery of striatal DA or TH protein loss, but reduced NfL and GFAP serum levels. This proof-of-concept study shows AE alleviates motor impairment when initiated with >80% striatal DA loss without obligate recovery of striatal DA or TH protein. Moreover, the AE-related reduction of NfL and GFAP serum levels may serve as objective blood-based biomarkers of AE efficacy.

11.
Synapse ; 67(5): 245-57, 2013 May.
Article in English | MEDLINE | ID: mdl-23280858

ABSTRACT

Methamphetamine (METH) is a highly addictive and neurotoxic psychostimulant. Its use in humans is often associated with neurocognitive impairment. Whether this is due to long-term deficits in short-term memory and/or hippocampal plasticity remains unclear. Recently, we reported that METH increases baseline synaptic transmission and reduces LTP in an ex vivo preparation of the hippocampal CA1 region from young mice. In the current study, we tested the hypothesis that a repeated neurotoxic regimen of METH exposure in adolescent mice decreases hippocampal synaptic plasticity and produces a deficit in short-term memory. Contrary to our prediction, there was no change in the hippocampal plasticity or short-term memory when measured after 14 days of METH exposure. However, we found that at 7, 14, and 21 days of drug abstinence, METH-exposed mice exhibited a deficit in spatial memory, which was accompanied by a decrease in hippocampal plasticity. Our results support the interpretation that the deleterious cognitive consequences of neurotoxic levels of METH exposure may manifest and persist after drug abstinence. Therefore, therapeutic strategies should consider short-term as well as long-term consequences of methamphetamine exposure.


Subject(s)
Dopamine Agents/toxicity , Memory, Short-Term/drug effects , Methamphetamine/toxicity , Age Factors , Animals , Hippocampus/physiology , Long-Term Potentiation/drug effects , Male , Mice , Mice, Inbred C57BL , Time Factors
12.
Lancet Glob Health ; 11(7): e1120-e1124, 2023 07.
Article in English | MEDLINE | ID: mdl-37349037

ABSTRACT

Ending the HIV epidemic relies in part on integrating stand-alone HIV programming with primary health-care platforms to improve population-level health and ensure sustainability. Integration of HIV and primary health care services in sub-Saharan Africa improves both outcomes. Existing models support both integrating primary health care services into existing HIV services, and incorporating HIV services into primary health care platforms, with optimal programming based on local contexts and local epidemic factors. Person-centred differentiated service delivery, community-based interventions, and a well supported health workforce form the backbone of successful integration. Strategic financing to optimise HIV and primary health care integration requires well-coordinated partnerships with host governments, private sector companies, multilateral stakeholders, development banks, and non-government organisations. Programme success will require increased flexibility of international donors' implementation guidance as well as involvement of local communities and civil society organisations. As we seek to end the HIV epidemic by 2030 amidst a constrained global economic climate, integration of HIV programming with primary health care offers an avenue of opportunity and hope.


Subject(s)
HIV Infections , Humans , HIV Infections/epidemiology , HIV Infections/prevention & control , Government , Africa South of the Sahara/epidemiology , Primary Health Care
13.
Geroscience ; 45(1): 45-63, 2023 02.
Article in English | MEDLINE | ID: mdl-35635679

ABSTRACT

Identifying neurobiological mechanisms of aging-related parkinsonism, and lifestyle interventions that mitigate them, remain critical knowledge gaps. No aging study, from rodent to human, has reported loss of any dopamine (DA) signaling marker near the magnitude associated with onset of parkinsonian signs in Parkinson's disease (PD). However, in substantia nigra (SN), similar loss of DA signaling markers in PD or aging coincide with parkinsonian signs. Alleviation of these parkinsonian signs may be possible by interventions such as calorie restriction (CR), which augment DA signaling markers like tyrosine hydroxylase (TH) expression in the SN, but not striatum. Here, we interrogated respective contributions of nigral and striatal DA mechanisms to aging-related parkinsonian signs in aging (18 months old) rats in two studies: by the imposition of CR for 6 months, and inhibition of DA uptake within the SN or striatum by cannula-directed infusion of nomifensine. Parkinsonian signs were mitigated within 12 weeks after CR and maintained until 24 months old, commensurate with increased D1 receptor expression in the SN alone, and increased GDNF family receptor, GFR-α1, in the striatum, suggesting increased GDNF signaling. Nomifensine infusion into the SN or striatum selectively increased extracellular DA. However, only nigral infusion increased locomotor activity. These results indicate mechanisms that increase components of DA signaling in the SN alone mitigate parkinsonian signs in aging, and are modifiable by interventions, like CR, to offset parkinsonian signs, even at advanced age. Moreover, these results give evidence that changes in nigral DA signaling may modulate some parameters of locomotor activity autonomously from striatal DA signaling.


Subject(s)
Dopamine , Parkinson Disease , Humans , Rats , Animals , Dopamine/metabolism , Rats, Inbred F344 , Caloric Restriction , Nomifensine/metabolism , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Glial Cell Line-Derived Neurotrophic Factor/pharmacology , Substantia Nigra/metabolism
14.
bioRxiv ; 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37502851

ABSTRACT

Background: Alleviation of motor impairment by aerobic exercise (AE) in Parkinson's disease (PD) points to a CNS response that could be targeted by therapeutic approaches, but recovery of striatal dopamine (DA) or tyrosine hydroxylase (TH) has been inconsistent in rodent studies. Objective: To increase translation of AE, 3 components were implemented into AE design to determine if recovery of established motor impairment, concomitant with >80% striatal DA and TH loss, was possible. We also evaluated if serum levels of neurofilament light (NfL) and glial fibrillary acidic protein (GFAP), blood-based biomarkers of disease severity in human PD, were affected. Methods: We used a 6-OHDA hemiparkinson rat model featuring progressive nigrostriatal neuron loss over 28 days, with impaired forelimb use 7 days post-lesion, and hypokinesia onset 21 days post-lesion. After establishing forelimb use deficits, moderate intensity AE began 1-3 days later, 3x per week, for 40 min/session. Motor assessments were conducted weekly for 3 wks, followed by determination of striatal DA, TH protein and mRNA, and NfL and GFAP serum levels. Results: Seven days after 6-OHDA lesion, recovery of depolarization-stimulated extracellular DA and DA tissue content was <10%, representing severity of DA loss in human PD, concomitant with 50% reduction in forelimb use. Despite severe DA loss, recovery of forelimb use deficits and alleviation of hypokinesia progression began after 2 weeks of AE and was maintained. Increased NfLand GFAP levels from lesion were reduced by AE. Despite these AE-driven changes, striatal DA tissue and TH protein levels were unaffected. Conclusions: This proof-of-concept study shows AE, using exercise parameters within the capabilities most PD patients, promotes recovery of established motor deficits in a rodent PD model, concomitant with reduced levels of blood-based biomarkers associated with PD severity, without commensurate increase in striatal DA or TH protein.

15.
bioRxiv ; 2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36909534

ABSTRACT

Although glial cell line-derived neurotrophic factor (GDNF) showed efficacy in preclinical and early clinical studies to alleviate parkinsonian signs in Parkinson's disease (PD), later trials did not meet primary endpoints, giving pause to consider further investigation. While GDNF dose and delivery methods may have contributed to diminished efficacy, one crucial aspect of these clinical studies is that GDNF treatment across all studies began ∼8 years after PD diagnosis; a time point representing several years after near 100% depletion of nigrostriatal dopamine markers in striatum and at least 50% in substantia nigra (SN), and is later than the timing of GDNF treatment in preclinical studies. With nigrostriatal terminal loss exceeding 70% at PD diagnosis, we utilized hemi-parkinsonian rats to determine if expression of GDNF family receptor, GFR-α1, and receptor tyrosine kinase, RET, differed between striatum and SN at 1 and 4 weeks following a 6-hydroxydopamine (6-OHDA) lesion. Whereas GDNF expression changed minimally, GFR-α1 expression decreased progressively in striatum and in tyrosine hydroxylase positive (TH+) cells in SN, correlating with reduced TH cell number. However, in nigral astrocytes, GFR-α1 expression increased. RET expression decreased maximally in striatum by 1 week, whereas in the SN, a transient bilateral increase occurred that returned to control levels by 4 weeks. Expression of brain-derived neurotrophic factor (BDNF) or its receptor, TrkB, were unchanged throughout lesion progression. Together, these results reveal that differential GFR-α1 and RET expression between the striatum and SN, and cell-specific differences in GFR-α1 expression in SN, occur during nigrostriatal neuron loss. Targeting loss of GDNF receptors appears critical to enhance GDNF therapeutic efficacy against nigrostriatal neuron loss. Significance Statement: Although preclinical evidence supports that GDNF provides neuroprotection and improves locomotor function in preclinical studies, clinical data supporting its efficacy to alleviate motor impairment in Parkinson's disease patients remains uncertain. Using the established 6-OHDA hemi-parkinsonian rat model, we determined whether expression of its cognate receptors, GFR-α1 and RET, were differentially affected between striatum and substantia nigra in a timeline study. In striatum, there was early and significant loss of RET, but a gradual, progressive loss of GFR-α1. In contrast, RET transiently increased in lesioned substantia nigra, but GFR-α1 progressively decreased only in nigrostriatal neurons and correlated with TH cell loss. Our results indicate that direct availability of GFR-α1 may be a critical element that determines GDNF efficacy following striatal delivery. Highlights: GDNF expression was minimally affected by nigrostriatal lesionGDNF family receptor, GFR-α1, progressively decreased in striatum and in TH neurons in SN.GFR-α1 expression decreased along with TH neurons as lesion progressedGFR-α1 increased bilaterally in GFAP+ cells suggesting an inherent response to offset TH neuron lossRET expression was severely reduced in striatum, whereas it increased in SN early after lesion induction.

16.
Exp Neurol ; 366: 114435, 2023 08.
Article in English | MEDLINE | ID: mdl-37178997

ABSTRACT

Although glial cell line-derived neurotrophic factor (GDNF) showed efficacy in preclinical and early clinical studies to alleviate parkinsonian signs in Parkinson's disease (PD), later trials did not meet primary endpoints, giving pause to consider further investigation. While GDNF dose and delivery methods may have contributed to diminished efficacy, one crucial aspect of these clinical studies is that GDNF treatment began ∼8 years after PD diagnosis; a time point representing several years after near 100% depletion of nigrostriatal dopamine markers in striatum and at least 50% in substantia nigra (SN), which represents a time point of initiating GDNF treatment later than reported in some preclinical studies. With nigrostriatal terminal loss exceeding 70% at PD diagnosis, we utilized hemiparkinsonian rats to determine if expression of GDNF family receptor, GFR-α1, and receptor tyrosine kinase, RET, differed between striatum and SN at 1 and 4 weeks following a 6-hydroxydopamine (6-OHDA) hemilesion. Whereas GDNF expression changed minimally, GFR-α1 expression decreased progressively in striatum and in tyrosine hydroxylase positive (TH+) cells in SN, correlating with reduced TH cell number. However, in nigral astrocytes, GFR-α1 expression increased. RET expression decreased maximally in striatum by 1 week, whereas in the SN, a transient bilateral increase occurred, returning to control levels by 4 weeks. Expression of brain-derived neurotrophic factor (BDNF) or its receptor, TrkB, were unchanged throughout lesion progression. Together, these results reveal that differential GFR-α1 and RET expression between the striatum and SN, and cell-specific differences in GFR-α1 expression in SN, occur during nigrostriatal neuron loss. Targeting loss of GDNF receptors thus appears critical to enhance GDNF therapeutic efficacy against nigrostriatal neuron loss. SIGNIFICANCE STATEMENT: Although preclinical evidence supports that GDNF provides neuroprotection and improves locomotor function in preclinical studies, there is uncertainty if it can alleviate motor impairment in Parkinson's disease patients. Using the established 6-OHDA hemiparkinsonian rat model, we determined whether expression of its cognate receptors, GFR-α1 and RET, were differentially affected between striatum and substantia nigra in a timeline study. In striatum, there was early and significant loss of RET, but a gradual, progressive loss of GFR-α1. In contrast, RET transiently increased in lesioned substantia nigra, but GFR-α1 progressively decreased only in nigrostriatal neurons and correlated with TH cell loss. Our results indicate that direct availability of GFR-α1 may be a critical element that determines GDNF efficacy following striatal delivery.


Subject(s)
Parkinson Disease , Animals , Rats , Corpus Striatum/metabolism , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Oxidopamine/toxicity , Parkinson Disease/metabolism , Substantia Nigra/metabolism , Tyrosine 3-Monooxygenase/metabolism
17.
Exp Neurol ; 368: 114509, 2023 10.
Article in English | MEDLINE | ID: mdl-37634696

ABSTRACT

Compensatory mechanisms that augment dopamine (DA) signaling are thought to mitigate onset of hypokinesia prior to major loss of tyrosine hydroxylase (TH) in striatum that occurs in Parkinson's disease. However, the identity of such mechanisms remains elusive. In the present study, the rat nigrostriatal pathway was unilaterally-lesioned with 6-hydroxydopamine (6-OHDA) to determine whether differences in DA content, TH protein, TH phosphorylation, or D1 receptor expression in striatum or substantia nigra (SN) aligned with hypokinesia onset and severity at two time points. In striatum, DA and TH loss reached its maximum (>90%) 7 days after lesion induction. However, in SN, no DA loss occurred, despite ∼60% TH loss. Hypokinesia was established at 21 days post-lesion and maintained at 28 days. At this time, DA loss was ∼60% in the SN, but still of lesser magnitude than TH loss. At day 7 and 28, ser31 TH phosphorylation increased only in SN, corresponding to less DA versus TH protein loss. In contrast, ser40 TH phosphorylation was unaffected in either region. Despite DA loss in both regions at day 28, D1 receptor expression increased only in lesioned SN. These results support the concept that augmented components of DA signaling in the SN, through increased ser31 TH phosphorylation and D1 receptor expression, contribute as compensatory mechanisms against progressive nigrostriatal neuron and TH protein loss, and may mitigate hypokinesia severity.


Subject(s)
Hypokinesia , Tyrosine 3-Monooxygenase , Animals , Rats , Phosphorylation , Dopamine , Neurons , Oxidopamine/toxicity , Substantia Nigra
18.
Neurobiol Dis ; 45(3): 1051-67, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22198503

ABSTRACT

Environmental enrichment has been shown to be both neuroprotective and neurorestorative in 1-methyl-2-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse models of Parkinson's disease (PD). However, whether social interaction or novel physical stimulation is responsible for this recovery is controversial. In the current study, we have investigated the effects of only social enrichment (SocE) in progressively MPTP-lesioned mice. After mice were lesioned using a progressively increased dose (4 mg/kg, 8 mg/kg, 16 mg/kg and 32 mg/kg; each dose daily for 5 days), the MPTP-induced behavioral deficits, after the 32 mg/kg dose, were reversed with acute L-DOPA. This acute behavioral recovery suggests that this progressive MPTP-induced neurodegeneration is an appropriate murine model of PD. Mice were housed four per cage for the first 2 weeks of progressive lesioning or vehicle treatment. After the 8 mg/kg MPTP dose (prior to SocE intervention) mice showed a significant decrease in rearing and foot fault behaviors (FF/BB) compared to the vehicle group. Additionally, there was a 38% decrease in mean number of tyrosine hydroxylase immunoreactive (TH-ir) substantia nigra pars compacta (SNpc) neurons/section, and a 50% decrease in the optical density of TH-ir dorsolateral caudate putamen (CPu) terminals compared to the vehicle group. Mice were then housed either two (socially limited environment; SLE) or twelve (SocE) mice per cage during continued MPTP lesioning for the next 2 weeks at 16 mg/kg and 32 mg/kg MPTP. MPTP treatment was then discontinued, while mice remained in the SLE or SocE cages for an additional week. Rearing behavior was further impaired in SLE-MPTP mice following progressive MPTP, accompanied by additional decreases in the mean number of TH-ir SNpc neurons/section and CPu TH-ir terminals. CPu TH and dopamine transporter (DAT) protein expression, as well as dopamine tissue and TH protein levels was significantly decreased compared to either vehicle group. However, the deficit in rearing behavior in SLE-MPTP mice was reversed with acute L-DOPA following the intervention period. SocE-MPTP mice showed rearing and FF/BB behaviors similar to vehicle levels, although FF/BB was not significantly different from pre-intervention levels. The reversal from pre-intervention rearing deficits was correlated with an attenuated decrease in the mean number of SNpc TH-ir neurons/section and CPu TH and DAT protein, and with a blocked decrease in CPu TH-ir terminals compared to pre-intervention levels. Our findings show that SocE mice not only resist further nigrostriatal lesioning and FF/BB deficit, but rearing behavior is recovered to the level of the vehicle group despite continued MPTP treatment. In contrast, SLE mice showed continued loss of nigrostriatal TH-ir and decline of motor behaviors with progressive MPTP. The data suggest that non-pharmacological intervention that started at an early stage of dopamine loss is effective at slowing or blocking further nigrostriatal degeneration.


Subject(s)
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/adverse effects , Corpus Striatum/pathology , Environment , Motor Activity/physiology , Parkinson Disease , Substantia Nigra/pathology , Analysis of Variance , Animals , Cell Count , Corpus Striatum/drug effects , Disease Models, Animal , Dopamine/metabolism , Dose-Response Relationship, Drug , Gene Expression Regulation/drug effects , Gene Expression Regulation/physiology , Levodopa/therapeutic use , Mice , Mice, Inbred C57BL , Motor Activity/drug effects , Parkinson Disease/etiology , Parkinson Disease/pathology , Parkinson Disease/therapy , Psychomotor Performance/drug effects , Substantia Nigra/drug effects , Tyrosine 3-Monooxygenase/metabolism
19.
Eur Cell Mater ; 23: 400-12; discussion 412, 2012 Jun 05.
Article in English | MEDLINE | ID: mdl-22665162

ABSTRACT

Peripheral artery disease (PAD) currently affects approximately 27 million patients in Europe and North America, and if untreated, may progress to the stage of critical limb ischemia (CLI), which has implications for amputation and potential mortality. Unfortunately, few therapies exist for treating the ischemic skeletal muscle in these conditions. Biomaterials have been used to increase cell transplant survival as well as deliver growth factors to treat limb ischemia; however, existing materials do not mimic the native skeletal muscle microenvironment they are intended to treat. Furthermore, no therapies involving biomaterials alone have been examined. The goal of this study was to develop a clinically relevant injectable hydrogel derived from decellularized skeletal muscle extracellular matrix and examine its potential for treating PAD as a stand-alone therapy by studying the material in a rat hindlimb ischemia model. We tested the mitogenic activity of the scaffold's degradation products using an in vitro assay and measured increased proliferation rates of smooth muscle cells and skeletal myoblasts compared to collagen. In a rat hindlimb ischemia model, the femoral artery was ligated and resected, followed by injection of 150 µL of skeletal muscle matrix or collagen 1 week post-injury. We demonstrate that the skeletal muscle matrix increased arteriole and capillary density, as well as recruited more desmin-positive and MyoD-positive cells compared to collagen. Our results indicate that this tissue-specific injectable hydrogel may be a potential therapy for treating ischemia related to PAD, as well as have potential beneficial effects on restoring muscle mass that is typically lost in CLI.


Subject(s)
Extracellular Matrix , Muscle, Skeletal/transplantation , Neovascularization, Physiologic , Peripheral Arterial Disease/therapy , Animals , Desmin/metabolism , Disease Models, Animal , Femoral Artery/injuries , Hindlimb/injuries , Humans , Ischemia , Muscle, Skeletal/cytology , Organ Specificity , Rats
20.
J Parkinsons Dis ; 12(6): 1897-1915, 2022.
Article in English | MEDLINE | ID: mdl-35754287

ABSTRACT

BACKGROUND: Rodent Parkinson's disease (PD) models are valuable to interrogate neurobiological mechanisms of exercise that mitigate motor impairment. Translating these mechanisms to human PD must account for physical capabilities of the patient. OBJECTIVE: To establish cardiovascular parameters as a common metric for cross-species translation of aerobic exercise impact. METHOD: We evaluated aerobic exercise impact on heart rate (HR) in 21 early-stage PD subjects (Hoehn Yahr ≤1.5) exercising in non-contact boxing training for ≥3 months, ≥3x/week. In 4-month-old Pink1 knockout (KO) rats exercising in a progressively-increased treadmill speed regimen, we determined a specific treadmill speed that increased HR to an extent similar in human subjects. RESULTS: After completing aerobic exercise for ∼30 min, PD subjects had increased HR∼35% above baseline (∼63% maximum HR). Motor and cognitive test results indicated the exercising subjects completed the timed up and go (TUG) and trail-making test (TMT-A) in significantly less time versus exercise-naïve PD subjects. In KO and age-matched wild-type (WT) rats, treadmill speeds of 8-10 m/min increased HR up to 25% above baseline (∼67% maximum HR), with no further increases up to 16 m/min. Exercised KO, but not WT, rats showed increased locomotor activity compared to an age-matched exercise-naïve cohort at 5 months old. CONCLUSION: These proof-of-concept results indicate HR is a cross-species translation parameter to evaluate aerobic exercise impact on specific motor or cognitive functions in human subjects and rat PD models. Moreover, a moderate intensity exercise regimen is within the physical abilities of early-stage PD patients and is therefore applicable for interrogating neurobiological mechanisms in rat PD models.


Subject(s)
Parkinson Disease , Animals , Exercise Test , Exercise Therapy/methods , Heart Rate , Humans , Infant , Parkinson Disease/genetics , Rats
SELECTION OF CITATIONS
SEARCH DETAIL