Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters

Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 19(36): 24840-24854, 2017 Sep 20.
Article in English | MEDLINE | ID: mdl-28868556

ABSTRACT

The occupied and unoccupied electronic structures of three high spin TM(acac)3 (TM = Cr, Mn, and Fe) complexes (I, II, and III, respectively) were studied by revisiting their literature vapour-phase He(i) and, when available, He(ii) photoemission (PE) spectra and by means of original near-edge X-ray absorption fine structure (NEXAFS) spectroscopic data recorded at the O K-edge (OK-edge) and TM L2,3-edges (TML2,3-edges). The assignments of the vapour-phase He(i)/He(ii) PE spectra were guided by the results of spin-unrestricted non-relativistic Slater transition state calculations, while the OK-edge and TML2,3-edge spectroscopic pieces of evidence were analysed by exploiting the results of spin-unrestricted scalar-relativistic time-dependent density functional theory (DFT) and DFT/ROCIS calculations, respectively. Although the actual symmetry (D3, in the absence of any Jahn-Teller distortion) of the title molecules allowed an extensive mixing between TM t2g-like and eg-like atomic orbitals, the use of the Nalewajski-Mrozek TM-O bond multiplicity index combined with a thorough analysis of the ground state (GS) outcomes allowed the assessment of the TM-O bond weakening associated with the progressive TM 3d-based eg-like orbital filling. The experimental information provided by OK-edge spectra was rather poor; nevertheless, the combined use of symmetry, orbitals and spectra allowed us (i) to rationalise minor differences characterizing spectral features along the series, (ii) to quantify the contribution provided by the ligand-to-metal-charge-transfer (LMCT) excitations to the different spectral features, and (iii) to recognize the t2g-/eg-like nature of the TM 3d-based orbitals involved in LMCT transitions. As far as the TML2,3-edge spectra and the DFT/ROCIS results were concerned, the lowest lying I,IIL3 spectral features included states having either the GS spin multiplicity (S(I) = 3/2, S(II) = 2) or, at higher excitation energies (EEs), states with ΔS = ±1. In contrast to that, only states with ΔS = 0, -1 significantly contributed to the IIIL3 spectral pattern. Along the whole series, the L3 higher EE side was systematically characterized by states involving TM2p → π4 MLCT excitations; as such, coupled-single excitations with ΔS = 0 were involved in I and II, while single MLCT TM2p → π4 transitions with ΔS = -1 were involved in III.

2.
Phys Chem Chem Phys ; 18(40): 28110-28116, 2016 Oct 12.
Article in English | MEDLINE | ID: mdl-27722572

ABSTRACT

L2,3-edges absorption spectra of FePc (I) and FePc(η2-O2) (II) on Ag(110) have been modelled using the DFT/ROCIS method. Despite disregarding the presence of the substrate, the agreement between experiment and theory is remarkable. Moreover, theoretical results confirm the fraction of II (70%) present on the surface, thus allowing a thorough assignment of each experimental spectral feature. Ground state (GS) theoretical outcomes pertaining to I and II provide an intimate understanding of the electron transfer pathway ruling the I-based catalytic oxygen reduction reaction. DFT/ROCIS outcomes indicate that the lower excitation energy (EE) side of the I/IIL3 intensity distributions mainly includes states having the GS number of unpaired electrons (two in I and six in II), whereas states with higher/lower spin multiplicity contribute to the I/IIL3 higher EE side. The occurrence of states involving metal to ligand charge transfer transitions implying low lying empty π* ligand-based orbitals on the I/IIL3 higher EE sides have been confirmed.

3.
Phys Chem Chem Phys ; 16(37): 19852-5, 2014 Oct 07.
Article in English | MEDLINE | ID: mdl-25138592

ABSTRACT

L2,3 spectra of Cu(II) complexes have been simulated by means of time dependent DFT. Besides the agreement between theory and experiment, the adopted approach provided further insights into the use of the Cu(II) L3-edge intensity and position to investigate the Cu-ligand symmetry-restricted covalency and the ligand-field strength.

4.
Nat Mater ; 11(11): 970-7, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23085570

ABSTRACT

A careful choice of the surface coverage of iron phthalocyanine (FePc) on Ag (110) around the single monolayer allows us to drive with high precision both the long-range supramolecular arrangement and the local adsorption geometry of FePc molecules on the given surface. We show that this opens up the possibility of sharply switching the catalytic activity of FePc in the oxygen reduction reaction and contextual surface oxidation in a reproducible way. A comprehensive and detailed picture built on diverse experimental evidence from scanning tunnelling microscopy, X-ray photoelectron spectroscopy and X-ray absorption spectroscopy, coupled with density functional theory calculations, sheds new light on the nature of the catalytically active molecule-surface coordination and on the boundary conditions for its occurrence. The results are of relevance for the improvement of the catalytic efficiency of metallo-macrocycles as viable substitutes for platinum in the cathodic compartment of low-temperature fuel cells.

5.
Langmuir ; 26(4): 2466-72, 2010 Feb 16.
Article in English | MEDLINE | ID: mdl-19810724

ABSTRACT

Multicomponent supramolecular self-assemblies of exceptional long-range order and low defectivity are obtained if C(60) and 5-(4-aminophenyl)-10,15,20-triphenylporphyrin (TPP-NH2) are assembled on Ag(110) by sequential evaporation in the submonolayer range of TPP-NH2 and fullerene on the substrate surface and subsequent annealing. A (+/-2 -3, 6 +/- 3) array consisting of supramolecular stripes of a 1:1 C(60)/TPP-NH2 2D adduct develops at 410 K (the low temperature, LT, phase). If the LT phase is annealed at 470 K, then a 3:1 fullerene/TPP-NH2 (+/-3 -5, 5 +/- 5) nanoporous array (the HT phase) forms, with each pore containing a single porphyrin molecule. Phase separation occurs by annealing the HT phase at 520 K. Structural models are proposed and discussed on the basis of the experimental scanning tunneling microscopy results.


Subject(s)
Fullerenes/chemistry , Porphyrins/chemistry , Silver/chemistry , Temperature , Macromolecular Substances/chemistry , Microscopy, Scanning Tunneling , Particle Size , Surface Properties
6.
J Phys Chem B ; 109(36): 17197-204, 2005 Sep 15.
Article in English | MEDLINE | ID: mdl-16853194

ABSTRACT

A surface stabilized monolayer phase of nickel oxide, c(4 x 2)-Ni(3)O(4), has been found to grow epitaxially under reactive deposition conditions on Pd(100), in the presence of other adsorbed phases and in competition with them. High-quality scanning tunneling microscopy data are reported and discussed, including a detailed analysis of the defects and of the border morphology of this new phase. The data are discussed in the light of ab initio simulations of the electronic, energetic, and geometric properties of such a phase. A hybrid-exchange density functional theory approach has been used, and a slab model is adopted where palladium is simulated by a thin film covered on both sides by regular epilayers. A growth model has been developed that explains both the unusual stoichiometry of the phase and the observed defects.

8.
Phys Rev Lett ; 86(11): 2337-40, 2001 Mar 12.
Article in English | MEDLINE | ID: mdl-11289923

ABSTRACT

Szöke's concept for electron holography is hampered by forward scattering that dominates electron diffraction from electron point sources below the surface top layer. Forward scattering was proposed to be suppressed if the anisotropic nature of the electron source wave is exploited [T. Greber and J. Osterwalder, Chem. Phys. Lett. 256, 653 (1996)]. Experiments show a strong suppression of forward scattering in Al(111) if Al 2s photoelectrons (E(kin) = 952 eV) are measured near the nodal plane of the outgoing p wave. The holographic reconstruction from such diffraction data provides three dimensional images of atomic sites in unit cells with a size of more than 10 A.

SELECTION OF CITATIONS
SEARCH DETAIL